1
|
Zhou J, Zhao Y, Ling Y, Zhao P, Gao H, Yang Y, Chen J. Microsphere-Composite Hydrogel for Recruiting Stem Cells and Promoting Osteogenic Differentiation. ACS APPLIED BIO MATERIALS 2024; 7:6520-6528. [PMID: 39263987 DOI: 10.1021/acsabm.4c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
By recruiting stem cells into scaffolds and differentiating them into osteoblasts, stem cells can be mobilized to directly repair bone defects, which avoids a series of disadvantages of exogenous stem cell implantation. In this study, a microsphere-composite hydrogel for the recruitment and osteogenic differentiation of stem cells was constructed. Methacrylic anhydride modified gelatin (GelMA) and heparin (HepMA), as well as nanohydroxyapatite (nHAP), were used to prepare microspheres followed by adsorbing platelet-derived growth factor BB (PDGF-BB) whose loading efficiency was 53.7 ± 2.2%. Then the microspheres were compounded to the GelMA hydrogel encapsulated with simvastatin (SIM) to obtain microsphere-composite hydrogel GHnH-P@GS. GHnH-P@GS hydrogel could slowly release SIM and PDGF-BB, and the extents of release within 7 days were 44.1 ± 2.0% and 32.8 ± 1.1%. The synergistic effect of small molecule drugs and growth factors not only induced the recruitment of rabbit bone marrow-derived mesenchymal stem cells, but also promoted the osteogenic differentiation of stem cells, which was confirmed by experiments of cell migration, alkaline phosphatase, and alizarin red staining. Collectively, the microsphere-composite hydrogel GHnH-P@GS has a certain reference significance for the design of scaffolds for alveolar bone repair and regeneration.
Collapse
Affiliation(s)
- Juan Zhou
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yanling Zhao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yan Ling
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Peng Zhao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
- Burn & Trauma Treatment Center, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Hui Gao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yang Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
- Burn & Trauma Treatment Center, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Zhang S, Lin A, Tao Z, Fu Y, Xiao L, Ruan G, Li Y. Microsphere‐containing hydrogel scaffolds for tissue engineering. Chem Asian J 2022; 17:e202200630. [PMID: 35909078 DOI: 10.1002/asia.202200630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/25/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Shihao Zhang
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Anqi Lin
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Ziwei Tao
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Yingying Fu
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Lan Xiao
- Queensland University of Technology Centre for Biomedical Technologies AUSTRALIA
| | | | - Yulin Li
- East China University of Science and Technology Meilong Road 130 Shanghai CHINA
| |
Collapse
|
3
|
Wang L, Yan L, Liu S, Zhang H, Xiao J, Wang Z, Xiao W, Li B, Liao X. Conformational Transition-Driven Self-Folding Hydrogel Based on Silk Fibroin and Gelatin for Tissue Engineering Applications. Macromol Biosci 2022; 22:e2200189. [PMID: 35895675 DOI: 10.1002/mabi.202200189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/18/2022] [Indexed: 11/11/2022]
Abstract
Self-folding is a rapidly evolving method for converting flat objects into three-dimensional structures. However, because there are few materials with suitable properties, application of self-folding in tissue engineering has been hindered greatly. Herein, a novel self-folding hydrogel using a conformational transition mechanism was developed by employing a photocrosslinkable silk fibroin and gelatin. It was hypothesized that differences in the amount of β-sheet formation between the upper and lower layers would supply additional folding stress and drive the self-folding behaviour of a bilayer patch, which could improve the mechanical properties and long-term stability of the self-folded structure. In this study, the impact of various proportions of β-sheets in composite hydrogels on their swelling, mechanics, and internal microstructures were investigated. Subsequently, the folding process parameters were optimized, and diffusion through the folded tubular structure was studied with a perfusion test. Finally, it was proven that the self-folding hydrogel system is cytocompatible and can be utilized to build a 3D coculture system of "endothelial cells-smooth muscle cells". These findings suggest that the self-folding hydrogel could be a promising candidate for applications in blood vessel tissue engineering and regenerative medicine. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lu Wang
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Ling Yan
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Shuang Liu
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Hao Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Jing Xiao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Ziyin Wang
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Wenqian Xiao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Bo Li
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| |
Collapse
|