Safavi MS, Walsh FC, Visai L, Khalil-Allafi J. Progress in Niobium Oxide-Containing Coatings for Biomedical Applications: A Critical Review.
ACS OMEGA 2022;
7:9088-9107. [PMID:
35356687 PMCID:
PMC8944537 DOI:
10.1021/acsomega.2c00440]
[Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/01/2022] [Indexed: 05/11/2023]
Abstract
Typically, pure niobium oxide coatings are deposited on metallic substrates, such as commercially pure Ti, Ti6Al4 V alloys, stainless steels, niobium, TiNb alloy, and Mg alloys using techniques such as sputter deposition, sol-gel deposition, anodizing, and wet plasma electrolytic oxidation. The relative advantages and limitations of these coating techniques are considered, with particular emphasis on biomedical applications. The properties of a wide range of pure and modified niobium oxide coatings are illustrated, including their thickness, morphology, microstructure, elemental composition, phase composition, surface roughness and hardness. The corrosion resistance, tribological characteristics and cell viability/proliferation of the coatings are illustrated using data from electrochemical, wear resistance and biological cell culture measurements. Critical R&D needs for the development of improved future niobium oxide coatings, in the laboratory and in practice, are highlighted.
Collapse