1
|
Khan PA, Raheem A, Kalirajan C, Prashanth KG, Manivasagam G. In Vivo Assessment of a Triple Periodic Minimal Surface Based Biomimmetic Gyroid as an Implant Material in a Rabbit Tibia Model. ACS MATERIALS AU 2024; 4:479-488. [PMID: 39280806 PMCID: PMC11393938 DOI: 10.1021/acsmaterialsau.4c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 09/18/2024]
Abstract
Biomimetic approaches to implant construction are a rising frontier in implantology. Triple Periodic Minimal Surface (TPMS)-based additively manufactured gyroid structures offer a mean curvature of zero, rendering this structure an ideal porous architecture. Previous studies have demonstrated the ability of these structures to effectively mimic the mechanical cues required for optimal implant construction. The porous nature of gyroid materials enhances bone ingrowth, thereby improving implant stability within the body. This enhancement is attributed to the increased surface area of the gyroid structure, which is approximately 185% higher than that of a dense material of the same form factor. This larger surface area allows for enhanced cellular attachment and nutrient circulation facilitated by the porous channels. This study aims to evaluate the biological performance of a gyroid-based Ti6Al-4V implant material compared to a dense alloy counterpart. Cellular viability was assessed using the lactate dehydrogenase (LDH) assay, which demonstrated that the gyroid surface allowed marginally higher viability than dense material. The in vivo integration was studied over 6 weeks using a rabbit tibia model and characterized using X-ray, micro-CT, and histopathological examination. With a metal volume of 8.1%, the gyroid exhibited a bone volume/total volume (BV/TV) ratio of 9.6%, which is 11-fold higher than that of dense metal (0.8%). Histological assessments revealed neovascularization, in-bone growth, and the presence of a Haversian system in the gyroid structure, hinting at superior osteointegration.
Collapse
Affiliation(s)
- Pearlin Amaan Khan
- Centre for Biomaterials, Cellular, and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India
| | - Ansheed Raheem
- Centre for Biomaterials, Cellular, and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India
| | - Cheirmadurai Kalirajan
- Centre for Biomaterials, Cellular, and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India
| | - Konda Gokuldoss Prashanth
- Centre for Biomaterials, Cellular, and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India
- Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Geetha Manivasagam
- Centre for Biomaterials, Cellular, and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
2
|
Celles CAS, Dos Reis AC. Titanium: A systematic review of the relationship between crystallographic profile and cell adhesion. J Biomed Mater Res B Appl Biomater 2024; 112:e35450. [PMID: 39082230 DOI: 10.1002/jbm.b.35450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 01/23/2025]
Abstract
Dental implant surface properties such as roughness, wettability, and porosity ensure cell interaction and tissue integration. The clinical performance of dental implants depends on the crystallographic texture and protein and cell bonds to the substrates, where grain size, orientation, and inclination are parameters responsible for favoring osteoblast adhesion and limiting bacterial adhesion. The lack of consensus on the best crystallographic plan for cell adhesion prompted this systematic review, which aims to answer the following question: "What is the influence of the crystallographic plane on titanium surfaces on cell adhesion?" by evaluating the literature on the crystallographic characteristics of titanium and how these dictate topographical parameters and influence the cell adhesion of devices made from this material. It followed the Preferred Reporting Standards for Systematic Reviews and Meta-Analyses (PRISMA 2020) registered with the Open Science Framework (OSF) (osf.io/xq6kv). The search strategy was based on the PICOS method. It chose in vitro articles that analyzed crystallographic structure correlated with cell adhesion and investigated the microstructure and its effects on cell culture, different crystal orientation distributions, and the influence of crystallinity. The search strategies were applied to the different electronic databases: PubMed, Scopus, Science Direct, Embase, and Google Scholar, and the articles found were attached to the Rayyan digital platform and assessed blindly. The Joanna Bringgs Institute (JBI) tool assessed the risk of bias. A total of 248 articles were found. After removing duplicates, 192 were analyzed by title and abstract. Of these, 18 were selected for detailed reading in their entirety, 9 of which met the eligibility criteria. The included studies presented a low risk of bias. The role of the crystallographic orientation of the exposed faces in a multicrystalline material is little discussed in the scientific literature and its impact is recognized as dictating the topographical characteristics of the material that facilitate cell adhesion.
Collapse
Affiliation(s)
- Cícero Andrade Sigilião Celles
- Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Andréa Cândido Dos Reis
- Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil
| |
Collapse
|
3
|
Podgórski R, Wojasiński M, Małolepszy A, Jaroszewicz J, Ciach T. Fabrication of 3D-Printed Scaffolds with Multiscale Porosity. ACS OMEGA 2024; 9:29186-29204. [PMID: 39005818 PMCID: PMC11238315 DOI: 10.1021/acsomega.3c09035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/09/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024]
Abstract
3D printing is a promising technique for producing bone implants, but there is still a need to adjust efficiency, facilitate production, and improve biocompatibility. Porous materials have a proven positive effect on the regeneration of bone tissue, but their production is associated with numerous limitations. In this work, we described a simple method of producing polymer or polymer-ceramic filaments for 3D-printing scaffolds by adding micrometer-scale porous structures on scaffold surfaces. Scaffolds included polycaprolactone (PCL) as the primary polymer, β-tricalcium phosphate (β-TCP) as the ceramic filler, and poly(ethylene glycol) (PEG) as a porogen. The pressurized filament extrusion gave flexible filaments composed of PCL, β-TCP, and PEG, which are ready to use in fused filament fabrication (FFF) 3D printers. Washing of 3D-printed scaffolds in ethanol solution removed PEG and revealed a microporous structure and ceramic particles on the scaffold's surfaces. Furthermore, 3D-printed materials exhibit good printing precision, no cytotoxic properties, and highly impact MG63 cell alignment. Although combining PCL, PEG, and β-TCP is quite popular, the presented method allows the production of porous scaffolds with a well-organized structure without advanced equipment, and the produced filaments can be used to 3D print scaffolds on a simple commercially available 3D printer.
Collapse
Affiliation(s)
- Rafał Podgórski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Michał Wojasiński
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Artur Małolepszy
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Jakub Jaroszewicz
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
| | - Tomasz Ciach
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
- Centre for Advanced Materials and Technologies, CEZAMAT, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
4
|
Safiaghdam H, Baniameri S, Aminianfar H, Mohajeri SF, Dehghan MM, Tayebi L, Nokhbatolfoghahaei H, Khojasteh A. Evaluating osteogenic potential of a 3D-printed bioceramic-based scaffold for critical-sized defect treatment: an in vivo and in vitro investigation. In Vitro Cell Dev Biol Anim 2024; 60:657-666. [PMID: 38743380 DOI: 10.1007/s11626-024-00912-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/08/2024] [Indexed: 05/16/2024]
Abstract
The integration of precision medicine principles into bone tissue engineering has ignited a wave of research focused on customizing intricate scaffolds through advanced 3D printing techniques. Bioceramics, known for their exceptional biocompatibility and osteoconductivity, have emerged as a promising material in this field. This article aims to evaluate the regenerative capabilities of a composite scaffold composed of 3D-printed gelatin combined with hydroxyapatite/tricalcium phosphate bioceramics (G/HA/TCP), incorporating human dental pulp-derived stem cells (hDPSCs). Using 3D powder printing, we created cross-shaped biphasic calcium phosphate scaffolds with a gelatin layer. The bone-regenerating potential of these scaffolds, along with hDPSCs, was assessed through in vitro analyses and in vivo studies with 60 rats and critical-sized calvarial defects. The assessment included analyzing cellular proliferation, differentiation, and alkaline phosphatase activity (ALP), and concluded with a detailed histological evaluation of bone regeneration. Our study revealed a highly favorable scenario, displaying not only desirable cellular attachment and proliferation on the scaffolds but also a notable enhancement in the ALP activity of hDPSCs, underscoring their pivotal role in bone regeneration. However, the histological examination of calvarial defects at the 12-wk mark yielded a rather modest level of bone regeneration across all experimental groups. The test and cell group exhibited significant bone formation compared to all other groups except the control and cell group. This underscores the complexity of the regenerative process and paves the way for further in-depth investigations aimed at improving the potential of the composite scaffolds.
Collapse
Affiliation(s)
- Hannaneh Safiaghdam
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Baniameri
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Aminianfar
- Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Saeed Farzad Mohajeri
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Lobat Tayebi
- School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK, 74106, USA
- Department of Developmental Sciences, Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arash Khojasteh
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Xu Q, Bai Y, Li S, Hou W, Hao Y, Yang R, Li X, Zhang X. Enhancing osteogenesis and angiogenesis functions for Ti-24Nb-4Zr-8Sn scaffolds with methacrylated gelatin and deferoxamine. Front Bioeng Biotechnol 2024; 12:1372636. [PMID: 38707506 PMCID: PMC11066197 DOI: 10.3389/fbioe.2024.1372636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Repair of large bone defects remains challenge for orthopedic clinical treatment. Porous titanium alloys have been widely fabricated by the additive manufacturing, which possess the elastic modulus close to that of human cortical bone, good osteoconductivity and osteointegration. However, insufficient bone regeneration and vascularization inside the porous titanium scaffolds severely limit their capability for repair of large-size bone defects. Therefore, it is crucially important to improve the osteogenic function and vascularization of the titanium scaffolds. Herein, methacrylated gelatin (GelMA) were incorporated with the porous Ti-24Nb-4Zr-8Sn (Ti2448) scaffolds prepared by the electron beam melting (EBM) method (Ti2448-GelMA). Besides, the deferoxamine (DFO) as an angiogenic agent was doped into the Ti2448-GelMA scaffold (Ti2448-GelMA/DFO), in order to promote vascularization. The results indicate that GelMA can fully infiltrate into the pores of Ti2448 scaffolds with porous cross-linked network (average pore size: 120.2 ± 25.1 μm). Ti2448-GelMA scaffolds facilitated the differentiation of MC3T3-E1 cells by promoting the ALP expression and mineralization, with the amount of calcium contents ∼2.5 times at day 14, compared with the Ti2448 scaffolds. Impressively, the number of vascular meshes for the Ti2448-GelMA/DFO group (∼7.2/mm2) was significantly higher than the control group (∼5.3/mm2) after cultivation for 9 h, demonstrating the excellent angiogenesis ability. The Ti2448-GelMA/DFO scaffolds also exhibited sustained release of DFO, with a cumulative release of 82.3% after 28 days. Therefore, Ti2448-GelMA/DFO scaffolds likely provide a new strategy to improve the osteogenesis and angiogenesis for repair of large bone defects.
Collapse
Affiliation(s)
- Qian Xu
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang, Liaoning, China
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Yun Bai
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Shujun Li
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Wentao Hou
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Yulin Hao
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Rui Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaowu Li
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang, Liaoning, China
| | - Xing Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
6
|
Calazans Neto JV, Kreve S, Valente MLDC, Reis ACD. Protein absorption on titanium surfaces treated with a high-power laser: A systematic review. J Prosthet Dent 2024; 131:591-597. [PMID: 35418317 DOI: 10.1016/j.prosdent.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/25/2022]
Abstract
STATEMENT OF PROBLEM The surface of titanium dental implants treated with a high-power laser has been reported to favor osseointegration, mainly by altering protein uptake. Despite the large number of articles that address the topic, the heterogeneity of methodologies and results makes an understanding of the treatment's benefits difficult, and a systematic review is needed. PURPOSE The purpose of this systematic review was to further the knowledge on protein uptake on titanium surfaces that have undergone treatment with a high-power laser. MATERIAL AND METHODS This review followed the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines and was registered with the Open Science Framework (OSF) (osf.io/gcbna). Searches were performed in PubMed, Scopus, Web of Science, Embase, and Google Scholar databases. The articles were selected in 2 steps by 2 independent reviewers according to the previously selected eligibility criteria. The risk of bias was analyzed by using the Joanna Briggs Institute (JBI)-adapted quasi-experimental study evaluation tool. RESULTS The studies addressed have shown that applying a high-power laser to the implant surface, depending on its settings, generates topographical changes that can optimize the protein absorption process and thus accelerate the other biological processes. CONCLUSIONS The studies identified in this systematic review showed that surface treatment with a high-power laser represents a promising technique with a positive influence on protein uptake and osseointegration.
Collapse
Affiliation(s)
- João Vicente Calazans Neto
- Masters student, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Simone Kreve
- Doctoral student, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Mariana Lima da Costa Valente
- Postdoctoral student, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Andréa Cândido Dos Reis
- Professor, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil.
| |
Collapse
|
7
|
Khalvandi A, Tayebi L, Kamarian S, Saber-Samandari S, Song JI. Data-driven supervised machine learning to predict the compressive response of porous PVA/Gelatin hydrogels and in-vitro assessments: Employing design of experiments. Int J Biol Macromol 2023; 253:126906. [PMID: 37716655 DOI: 10.1016/j.ijbiomac.2023.126906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/01/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
The purpose of this study is to design and evaluate a series of porous hydrogels by considering three independent variables using the Box-Behnken method. Accordingly, concentrations of the constituent macromolecules of the hydrogels, Polyvinyl Alcohol and Gelatin, and concentration of the crosslinking agent are varied to fabricate sixteen different porous samples utilizing the lyophilization process. Subsequently, the porous hydrogels are subjected to a battery of tests, including Fourier Transform Infrared spectroscopy, morphology assessment, pore-size study, porosimetry, uniaxial compression, and swelling measurements. Additionally, in-vitro cell assessments are performed by culturing mouse fibroblast cells (L-929) on the hydrogels, where viability, proliferation, adhesion, and morphology of the L-929 cells are monitored over 24, 48, and 72 h to evaluate the biocompatibility of these biomaterials. To better understand the mechanical behavior of the hydrogels under compressive loadings, Deep Neural Networks (DNNs) are implemented to predict and capture their compressive stress-strain responses as a function of the constituent materials' concentrations and duration of the performed mechanical tests. Overall, this study emphasizes the importance of considering multiple variables in the design of porous hydrogels, provides a comprehensive evaluation of their mechanical and biological properties, and, particularly, implements DNNs in the prediction of the hydrogels' stress-strain responses.
Collapse
Affiliation(s)
- Ali Khalvandi
- Composites Research Laboratory (CRLab), Amirkabir University of Technology, Tehran, Iran; New Technologies Research Center, Amirkabir University of Technology, Tehran, Iran; Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI 53233, United States
| | - Saeed Kamarian
- Mechanical Engineering Department, Changwon National University, Changwon, Republic of Korea
| | - Saeed Saber-Samandari
- Composites Research Laboratory (CRLab), Amirkabir University of Technology, Tehran, Iran; New Technologies Research Center, Amirkabir University of Technology, Tehran, Iran.
| | - Jung-Il Song
- Mechanical Engineering Department, Changwon National University, Changwon, Republic of Korea
| |
Collapse
|
8
|
Loi G, Scocozza F, Aliberti F, Rinvenuto L, Cidonio G, Marchesi N, Benedetti L, Ceccarelli G, Conti M. 3D Co-Printing and Substrate Geometry Influence the Differentiation of C2C12 Skeletal Myoblasts. Gels 2023; 9:595. [PMID: 37504474 PMCID: PMC10378771 DOI: 10.3390/gels9070595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/07/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023] Open
Abstract
Cells are influenced by several biomechanical aspects of their microenvironment, such as substrate geometry. According to the literature, substrate geometry influences the behavior of muscle cells; in particular, the curvature feature improves cell proliferation. However, the effect of substrate geometry on the myogenic differentiation process is not clear and needs to be further investigated. Here, we show that the 3D co-printing technique allows the realization of substrates. To test the influence of the co-printing technique on cellular behavior, we realized linear polycaprolactone substrates with channels in which a fibrinogen-based hydrogel loaded with C2C12 cells was deposited. Cell viability and differentiation were investigated up to 21 days in culture. The results suggest that this technology significantly improves the differentiation at 14 days. Therefore, we investigate the substrate geometry influence by comparing three different co-printed geometries-linear, circular, and hybrid structures (linear and circular features combined). Based on our results, all structures exhibit optimal cell viability (>94%), but the linear pattern allows to increase the in vitro cell differentiation, in particular after 14 days of culture. This study proposes an endorsed approach for creating artificial muscles for future skeletal muscle tissue engineering applications.
Collapse
Affiliation(s)
- Giada Loi
- Department of Civil Engineering and Architecture, University of Pavia, Via Adolfo Ferrata 3, 27100 Pavia, Italy
| | - Franca Scocozza
- Department of Civil Engineering and Architecture, University of Pavia, Via Adolfo Ferrata 3, 27100 Pavia, Italy
| | - Flaminia Aliberti
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
- Fondazione IRCCS Policlinico San Matteo, Center for Inherited Cardiovascular Diseases, Transplant Research Area, 27100 Pavia, Italy
| | - Lorenza Rinvenuto
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
| | - Gianluca Cidonio
- Center for Life Nano- & Neuro-Science (CLN2S), Fondazione Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Nicola Marchesi
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
| | - Laura Benedetti
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
| | - Gabriele Ceccarelli
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
| | - Michele Conti
- Department of Civil Engineering and Architecture, University of Pavia, Via Adolfo Ferrata 3, 27100 Pavia, Italy
| |
Collapse
|
9
|
Calazans Neto JV, Valente MLDC, Reis ACD. Effect of pores on cell adhesion to additively manufactured titanium implants: A systematic review. J Prosthet Dent 2023:S0022-3913(23)00340-2. [PMID: 37353409 DOI: 10.1016/j.prosdent.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/25/2023]
Abstract
STATEMENT OF PROBLEM Titanium dental implants produced by additive manufacturing have pores that, depending on their size and quantity, may improve osteogenic cell adhesion without impairing mechanical properties. A systematic review of in vitro studies on this topic is lacking. PURPOSE The purpose of this systematic review was to answer the question "What is the influence of pores on osteogenic cell adhesion on titanium surfaces produced by additive manufacturing?". MATERIAL AND METHODS The study was designed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 2020 standards and registered in the Open Science Framework (OSF) (osf.io/baw59). A manual search of published articles without language or time restrictions was conducted in November 2022 in the electronic databases PubMed, Scopus, ScienceDirect, Embase, and in the nonpeer-reviewed literature via Google Scholar. RESULTS A total of 1338 initial results were found, and after removing duplicates and applying eligibility criteria, 13 articles were included in this review that, according to the Joanna Briggs Institute (JBI) tool, presented a low risk of bias. Pores with larger diameters provide greater a surface area that favors cell filopodia adhesion and has interconnection that optimizes the transport of nutrients and oxygen and bone cell activity. CONCLUSIONS The presence of pores on the surface of titanium produced by additive manufacturing increases the adhesion, migration, proliferation, and viability of osteogenic cells.
Collapse
Affiliation(s)
- João Vicente Calazans Neto
- Master's student, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Brazil
| | - Mariana Lima da Costa Valente
- Post-Doctoral student, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Brazil
| | - Andréa Cândido Dos Reis
- Professor, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo (USP), Brazil.
| |
Collapse
|
10
|
Gögele C, Vogt J, Hahn J, Breier A, Bernhardt R, Meyer M, Schröpfer M, Schäfer-Eckart K, Schulze-Tanzil G. Co-Culture of Mesenchymal Stem Cells and Ligamentocytes on Triphasic Embroidered Poly(L-lactide-co-ε-caprolactone) and Polylactic Acid Scaffolds for Anterior Cruciate Ligament Enthesis Tissue Engineering. Int J Mol Sci 2023; 24:ijms24076714. [PMID: 37047686 PMCID: PMC10095212 DOI: 10.3390/ijms24076714] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Successful anterior cruciate ligament (ACL) reconstructions strive for a firm bone-ligament integration. With the aim to establish an enthesis-like construct, embroidered functionalized scaffolds were colonized with spheroids of osteogenically differentiated human mesenchymal stem cells (hMSCs) and lapine (l) ACL fibroblasts in this study. These triphasic poly(L-lactide-co-ε-caprolactone) and polylactic acid (P(LA-CL)/PLA) scaffolds with a bone-, a fibrocartilage transition- and a ligament zone were colonized with spheroids directly after assembly (DC) or with 14-day pre-cultured lACL fibroblast and 14-day osteogenically differentiated hMSCs spheroids (=longer pre-cultivation, LC). The scaffolds with co-cultures were cultured for 14 days. Cell vitality, DNA and sulfated glycosaminoglycan (sGAG) contents were determined. The relative gene expressions of collagen types I and X, Mohawk, Tenascin C and runt-related protein (RUNX) 2 were analyzed. Compared to the lACL spheroids, those with hMSCs adhered more rapidly. Vimentin and collagen type I immunoreactivity were mainly detected in the hMSCs colonizing the bone zone. The DNA content was higher in the DC than in LC whereas the sGAG content was higher in LC. The gene expression of ECM components and transcription factors depended on cell type and pre-culturing condition. Zonal colonization of triphasic scaffolds using spheroids is possible, offering a novel approach for enthesis tissue engineering.
Collapse
Affiliation(s)
- Clemens Gögele
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Julia Vogt
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| | - Judith Hahn
- Department Materials Engineering, Institute of Polymers Materials, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Straße 6, 01069 Dresden, Germany
| | - Annette Breier
- Department Materials Engineering, Institute of Polymers Materials, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Straße 6, 01069 Dresden, Germany
| | - Ricardo Bernhardt
- Department Materials Engineering, Institute of Polymers Materials, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Straße 6, 01069 Dresden, Germany
| | - Michael Meyer
- FILK Freiberg Institute gGmbH (FILK), Meißner Ring 1-5, 09599 Freiberg, Germany
| | - Michaela Schröpfer
- FILK Freiberg Institute gGmbH (FILK), Meißner Ring 1-5, 09599 Freiberg, Germany
| | - Kerstin Schäfer-Eckart
- Bone Marrow Transplantation Unit, Medizinische Klinik 5, Klinikum Nürnberg, 90419 Nuremberg, Germany
| | - Gundula Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany
| |
Collapse
|
11
|
Liao TY, King PC, Zhu D, Crawford RJ, Ivanova EP, Thissen H, Kingshott P. Surface Characteristics and Bone Biocompatibility of Cold-Sprayed Porous Titanium on Polydimethylsiloxane Substrates. ACS Biomater Sci Eng 2023; 9:1402-1421. [PMID: 36813258 DOI: 10.1021/acsbiomaterials.2c01506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
A variant of the cold spray (CS) technique was applied for the functionalization of polymer-based materials such as polydimethylsiloxane (PDMS) to improve the extent of mammalian cell interactions with these substrates. This was demonstrated by the embedment of porous titanium (pTi) into PDMS substrates using a single-step CS technique. CS processing parameters such as gas pressure and temperature were optimized to achieve the mechanical interlocking of pTi in the compressed PDMS to fabricate a unique hierarchical morphology possessing micro-roughness. As evidenced by the preserved porous structure, the pTi particles did not undergo any significant plastic deformation upon impact with the polymer substrate. The thickness of the particle embedment layer was determined, by cross-sectional analysis, ranging from 120 μm to over 200 μm. The behavior of osteoblast-like cells MG63 coming into contact with the pTi-embedded PDMS was examined. The results showed that the pTi-embedded PDMS samples promoted 80-96% of cell adhesion and proliferation during the early stages of incubation. The low cytotoxicity of the pTi-embedded PDMS was confirmed, with cell viability of the MG63 cells being above 90%. Furthermore, the pTi-embedded PDMS facilitated the production of alkaline phosphatase and calcium deposition in the MG63 cells, as demonstrated by the higher amount of alkaline phosphatase (2.6 times) and calcium (10.6 times) on the pTi-embedded PDMS sample fabricated at 250 °C, 3 MPa. Overall, the work demonstrated that the CS process provided flexibility in the parameters used for the production of the modified PDMS substrates and is highly efficient for the fabrication of coated polymer products. The results obtained in this study suggest that a tailorable porous and rough architecture could be achieved that promoted osteoblast function, indicating that the method has promise in the design of titanium-polymer composite materials applied to biomaterials used in musculoskeletal applications.
Collapse
Affiliation(s)
- Tzu-Ying Liao
- School of Science, Computing & Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Australian Research Council (ARC) Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia
| | - Peter C King
- Australian Research Council (ARC) Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia
| | - Deming Zhu
- School of Science, Computing & Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Russell J Crawford
- Australian Research Council (ARC) Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- College of STEM, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Elena P Ivanova
- Australian Research Council (ARC) Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- College of STEM, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Helmut Thissen
- Australian Research Council (ARC) Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia
| | - Peter Kingshott
- School of Science, Computing & Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Australian Research Council (ARC) Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
12
|
Translating Material Science into Bone Regenerative Medicine Applications: State-of-The Art Methods and Protocols. Int J Mol Sci 2022; 23:ijms23169493. [PMID: 36012749 PMCID: PMC9409266 DOI: 10.3390/ijms23169493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 12/02/2022] Open
Abstract
In the last 20 years, bone regenerative research has experienced exponential growth thanks to the discovery of new nanomaterials and improved manufacturing technologies that have emerged in the biomedical field. This revolution demands standardization of methods employed for biomaterials characterization in order to achieve comparable, interoperable, and reproducible results. The exploited methods for characterization span from biophysics and biochemical techniques, including microscopy and spectroscopy, functional assays for biological properties, and molecular profiling. This review aims to provide scholars with a rapid handbook collecting multidisciplinary methods for bone substitute R&D and validation, getting sources from an up-to-date and comprehensive examination of the scientific landscape.
Collapse
|
13
|
Efficient double-layer sintering of titanomagnetite concentrate. Sci Rep 2022; 12:6355. [PMID: 35428821 PMCID: PMC9012848 DOI: 10.1038/s41598-022-10405-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/07/2022] [Indexed: 12/02/2022] Open
Abstract
The traditional titanomagnetite sintering process consumes high fuel and produces weak-strength sinter. In this study, double-layer sintering was used to solve above problems. The theoretical analysis and sintering pot test results showed that sintering of feed bed constituted by two different-basicity layers could improve mineralization and permeability. By using the double layer structure of sintering bed and controlling the basicities of lower and upper layer (2.5 and 1.5, respectively), the yield, productivity, and reduction disintegration index (RDI+3.15) were 67.32%, 1.65 t m2 h−1, 49.68% respectively, which were improved 33.12%, 1.74%, and 9.27%, respectively than those obtained by the traditional sintering process. Meanwhile, 1.69 kg t−1 of solid fuel consumption and nearly 10% of electricity and gas consumption for sintering were saved. It was demonstrated that using different basicities for upper and lower layer of sintering bed would promote formation of silica-ferrite of calcium and aluminum (SFCA) with simultaneous reduction of perovskite, improving the sinter quality.
Collapse
|