1
|
Behroozi Z, Rahimi B, Motamednezhad A, Ghadaksaz A, Hormozi-Moghaddam Z, Moshiri A, Jafarpour M, Hajimirzaei P, Ataie A, Janzadeh A. Combined effect of Cerium oxide nanoparticles loaded scaffold and photobiomodulation therapy on pain and neuronal regeneration following spinal cord injury: an experimental study. Photochem Photobiol Sci 2024; 23:225-243. [PMID: 38300466 DOI: 10.1007/s43630-023-00501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/25/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Spinal cord injury (SCI) remained one of the challenges to treat due to its complicated mechanisms. Photobiomodulation therapy (PBMT) accelerates neuronal regeneration. Cerium oxide nanoparticles (CeONPs) also eliminate free radicals in the environment. The present study aims to introduce a combined treatment method of making PCL scaffolds as microenvironments, seeded with CeONPs and the PBMT technique for SCI treatment. METHODS The surgical hemi-section was used to induce SCI. Immediately after the SCI induction, the scaffold (Sc) was loaded with CeONPs implanted. PBMT began 30 min after SCI induction and lasted for up to 4 weeks. Fifty-six male rats were randomly divided into seven groups. Glial fibrillary acidic protein (GFAP) (an astrocyte marker), Connexin 43 (Con43) (a member of the gap junction), and gap junctions (GJ) (a marker for the transfer of ions and small molecules) expressions were evaluated. The behavioral evaluation was performed by BBB, Acetone, Von Frey, and radiant heat tests. RESULT The SC + Nano + PBMT group exhibited the most remarkable recovery outcomes. Thermal hyperalgesia responses were mitigated, with the combined approach displaying the most effective relief. Mechanical allodynia and cold allodynia responses were also attenuated by treatments, demonstrating potential pain management benefits. CONCLUSION These findings highlight the potential of PBMT, combined with CeONPs-loaded scaffolds, in promoting functional motor recovery and alleviating pain-related responses following SCI. The study underscores the intricate interplay between various interventions and their cumulative effects, informing future research directions for enhancing neural repair and pain management strategies in SCI contexts.
Collapse
Affiliation(s)
- Zahra Behroozi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, 7616913555, Iran
| | - Behnaz Rahimi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Ali Motamednezhad
- College of Veterinary Medicine, Islamic Azad University, Karaj, 3149968111, Alborz, Iran
| | - Alireza Ghadaksaz
- Department of Biophysics, Medical School, University of Pécs, Pécs, 7622, Hungary
| | - Zeinab Hormozi-Moghaddam
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Radiation Sciences, Allied Medicine Faculty, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | | | - Maral Jafarpour
- International Campus, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Pooya Hajimirzaei
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Radiation Sciences, Allied Medicine Faculty, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Ali Ataie
- Zanjan University of Medical Sciences, Zanjan, Iran
| | - Atousa Janzadeh
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.
| |
Collapse
|
2
|
Yin P, Liang W, Han B, Yang Y, Sun D, Qu X, Hai Y, Luo D. Hydrogel and Nanomedicine-Based Multimodal Therapeutic Strategies for Spinal Cord Injury. SMALL METHODS 2024; 8:e2301173. [PMID: 37884459 DOI: 10.1002/smtd.202301173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Indexed: 10/28/2023]
Abstract
Spinal cord injury (SCI) is a severe neurodegenerative disease caused by mechanical and biological factors, manifesting as a loss of motor and sensory functions. Inhibition of injury expansion and even reversal of injury in the acute damage stage of SCI are important strategies for treating this disease. Hydrogels and nanoparticle (NP)-based drugs are the most effective, widely studied, and clinically valuable therapeutic strategies in the field of repair and regeneration. Hydrogels are 3D flow structures that fill the pathological gaps in SCI and provide a microenvironment similar to that of the spinal cord extracellular matrix for nerve cell regeneration. NP-based drugs can easily penetrate the blood-spinal cord barrier, target SCI lesions, and are noninvasive. Hydrogels and NPs as drug carriers can be loaded with various drugs and biological therapeutic factors for slow release in SCI lesions. They help drugs function more efficiently by exerting anti-inflammatory, antioxidant, and nerve regeneration effects to promote the recovery of neurological function. In this review, the use of hydrogels and NPs as drug carriers and the role of both in the repair of SCI are discussed to provide a multimodal strategic reference for nerve repair and regeneration after SCI.
Collapse
Affiliation(s)
- Peng Yin
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Joint Laboratory for Research & Treatment of Spinal Cord Injury in Spinal Deformity, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
- Clinical Center for Spinal Deformity, Capital Medical University, Beijing, 100069, China
| | - Weishi Liang
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Joint Laboratory for Research & Treatment of Spinal Cord Injury in Spinal Deformity, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
- Clinical Center for Spinal Deformity, Capital Medical University, Beijing, 100069, China
| | - Bo Han
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Joint Laboratory for Research & Treatment of Spinal Cord Injury in Spinal Deformity, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
- Clinical Center for Spinal Deformity, Capital Medical University, Beijing, 100069, China
| | - Yihan Yang
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Joint Laboratory for Research & Treatment of Spinal Cord Injury in Spinal Deformity, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
- Clinical Center for Spinal Deformity, Capital Medical University, Beijing, 100069, China
| | - Duan Sun
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Joint Laboratory for Research & Treatment of Spinal Cord Injury in Spinal Deformity, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
- Clinical Center for Spinal Deformity, Capital Medical University, Beijing, 100069, China
| | - Xianjun Qu
- Joint Laboratory for Research & Treatment of Spinal Cord Injury in Spinal Deformity, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yong Hai
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Joint Laboratory for Research & Treatment of Spinal Cord Injury in Spinal Deformity, Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100069, China
- Clinical Center for Spinal Deformity, Capital Medical University, Beijing, 100069, China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| |
Collapse
|