1
|
Zhang Y, Zhang Q, Li C, Zhou Z, Lei H, Liu M, Zhang D. Advances in cell membrane-based biomimetic nanodelivery systems for natural products. Drug Deliv 2024; 31:2361169. [PMID: 38828914 PMCID: PMC11149581 DOI: 10.1080/10717544.2024.2361169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Active components of natural products, which include paclitaxel, curcumin, gambogic acid, resveratrol, triptolide and celastrol, have promising anti-inflammatory, antitumor, anti-oxidant, and other pharmacological activities. However, their clinical application is limited due to low solubility, instability, low bioavailability, rapid metabolism, short half-life, and strong off-target toxicity. To overcome these drawbacks, cell membrane-based biomimetic nanosystems have emerged that avoid clearance by the immune system, enhance targeting, and prolong drug circulation, while also improving drug solubility and bioavailability, enhancing drug efficacy, and reducing side effects. This review summarizes recent advances in the preparation and coating of cell membrane-coated biomimetic nanosystems and in their applications to disease for targeted natural products delivery. Current challenges, limitations, and prospects in this field are also discussed, providing a research basis for the development of multifunctional biomimetic nanosystems for natural products.
Collapse
Affiliation(s)
- Yifeng Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Qian Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Chunhong Li
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Ziyun Zhou
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Hui Lei
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Minghua Liu
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| |
Collapse
|
2
|
Patel D, Solanki J, Kher MM, Azagury A. A Review: Surface Engineering of Lipid-Based Drug Delivery Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401990. [PMID: 39004869 DOI: 10.1002/smll.202401990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/19/2024] [Indexed: 07/16/2024]
Abstract
This review explores the evolution of lipid-based nanoparticles (LBNPs) for drug delivery (DD). Herein, LBNPs are classified into liposomes and cell membrane-based nanoparticles (CMNPs), each with unique advantages and challenges. Conventional LBNPs possess drawbacks such as poor targeting, quick clearance, and limited biocompatibility. One of the possible alternatives to overcome these challenges is surface modification of nanoparticles (NPs) with materials such as polyethylene glycol (PEG), aptamers, antibody fragments, peptides, CD44, hyaluronic acid, folic acid, palmitic acid, and lactoferrin. Thus, the main focus of this review will be on the different surface modifications that enable LBNPs to have beneficial properties for DD, such as enhancing mass transport properties, immune evasion, improved stability, and targeting. Moreover, various CMNPs are explored used for DD derived from cells such as red blood cells (RBCs), platelets, leukocytes, cancer cells, and stem cells, highlighting their unique natural properties (e.g., biocompatibility and ability to evade the immune system). This discussion extends to the biomimicking of hybrid NPs accomplished through the surface coating of synthetic (mainly polymeric) NPs with different cell membranes. This review aims to provide a comprehensive resource for researchers on recent advances in the field of surface modification of LBNPs and CMNPs. Overall, this review provides valuable insights into the dynamic field of lipid-based DD systems.
Collapse
Affiliation(s)
- Dhaval Patel
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, 4070000, Israel
| | - Jyoti Solanki
- Post Graduate Department of Biosciences, Sardar Patel University, Bakrol, Anand, Gujarat, 388120, India
| | - Mafatlal M Kher
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, 4070000, Israel
| | - Aharon Azagury
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, 4070000, Israel
| |
Collapse
|
3
|
Wang B, Tang D, Cui J, Jiang H, Yu J, Guo Z. RGD-based self-assembling nanodrugs for improved tumor therapy. Front Pharmacol 2024; 15:1477409. [PMID: 39411070 PMCID: PMC11473307 DOI: 10.3389/fphar.2024.1477409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
RGD-based self-assembling nanodrugs are a promising advancement in targeted cancer therapy, combining the specificity of RGD peptides with the benefits of nanotechnology. These nanodrugs enhance tumor targeting and cellular uptake while reducing off-target effects. RGD peptides facilitate the self-assembly of stable nanostructures, ensuring efficient drug delivery. Despite their potential, challenges such as immunogenicity, stability, tumor heterogeneity, and manufacturing scalability need to be addressed. Future research should focus on improving biocompatibility, advanced targeting strategies, personalized medicine approaches, and innovative manufacturing techniques. Overcoming these challenges will pave the way for the successful clinical translation of RGD-based nanodrugs, offering more effective and safer cancer treatments.
Collapse
Affiliation(s)
- Bin Wang
- Department of Sports Medicine, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Dongmei Tang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jianqiao Cui
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jing Yu
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, Municipal Hospital, Qingdao, China
| | - Zhu Guo
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Wang Z, Jiang N, Jiang Z, Deng Q, Zhou Q, Hu B. Beyond silence: evolving ultrasound strategies in the battle against cardiovascular thrombotic challenges. J Thromb Thrombolysis 2024; 57:1040-1050. [PMID: 38689069 DOI: 10.1007/s11239-024-02989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Cardiovascular thrombotic events have long been a perplexing factor in clinical settings, influencing patient prognoses significantly. Ultrasound-mediated acoustic therapy, an innovative thrombolytic treatment method known for its high efficiency, non-invasiveness, safety, and convenience, has demonstrated promising potential for clinical applications and has gradually become a focal point in cardiovascular thrombotic disease research. The current challenge lies in the technical complexities of preparing ultrasound-responsive carriers with thrombus-targeting capabilities and high thrombolytic efficiency. Additionally, optimizing the corresponding acoustic treatment mode is crucial to markedly enhance the thrombolytic effectiveness of ultrasound-mediated acoustic therapy. In light of the current status, this article provides a comprehensive review of the research progress in innovative ultrasound-mediated acoustic therapy for cardiovascular thrombotic diseases. It explores the impact of technical methods, therapeutic mechanisms, and influencing factors on the thrombolytic efficiency and clinical potential of ultrasound-mediated acoustic therapy. The review places particular emphasis on identifying solutions and key considerations in addressing the challenges associated with this cutting-edge therapeutic approach.
Collapse
Affiliation(s)
- Zhiwen Wang
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Nan Jiang
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Zhixin Jiang
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Qing Deng
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Qing Zhou
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China.
| | - Bo Hu
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China.
| |
Collapse
|
5
|
Javid H, Oryani MA, Rezagholinejad N, Esparham A, Tajaldini M, Karimi‐Shahri M. RGD peptide in cancer targeting: Benefits, challenges, solutions, and possible integrin-RGD interactions. Cancer Med 2024; 13:e6800. [PMID: 38349028 PMCID: PMC10832341 DOI: 10.1002/cam4.6800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 02/15/2024] Open
Abstract
RGD peptide can be found in cell adhesion and signaling proteins, such as fibronectin, vitronectin, and fibrinogen. RGD peptides' principal function is to facilitate cell adhesion by interacting with integrin receptors on the cell surface. They have been intensively researched for use in biotechnology and medicine, including incorporation into biomaterials, conjugation to medicinal molecules or nanoparticles, and labeling with imaging agents. RGD peptides can be utilized to specifically target cancer cells and the tumor vasculature by engaging with these integrins, improving drug delivery efficiency and minimizing adverse effects on healthy tissues. RGD-functionalized drug carriers are a viable option for cancer therapy as this focused approach has demonstrated promise in the future. Writing a review on the RGD peptide can significantly influence how drugs are developed in the future by improving our understanding of the peptide, finding knowledge gaps, fostering innovation, and making drug design easier.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Medical Laboratory SciencesVarastegan Institute for Medical SciencesMashhadIran
- Department of Clinical Biochemistry, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
- Surgical Oncology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Mahsa Akbari Oryani
- Department of Pathology, School of MedicineMashhad University of Medical SciencesMashhadIran
| | | | - Ali Esparham
- Student Research Committee, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mahboubeh Tajaldini
- Ischemic Disorder Research CenterGolestan University of Medical SciencesGorganIran
| | - Mehdi Karimi‐Shahri
- Department of Pathology, School of MedicineMashhad University of Medical SciencesMashhadIran
- Department of Pathology, School of MedicineGonabad University of Medical SciencesGonabadIran
| |
Collapse
|
6
|
Hao C, Sha M, Ye Y, Wang C. Cell Membrane-Derived Nanovehicles for Targeted Therapy of Ischemic Stroke: From Construction to Application. Pharmaceutics 2023; 16:6. [PMID: 38276484 PMCID: PMC10819970 DOI: 10.3390/pharmaceutics16010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 01/27/2024] Open
Abstract
Ischemic stroke (IS) is a prevalent form of stroke and a leading cause of mortality and disability. Recently, cell membrane-derived nanovehicles (CMNVs) derived from erythrocytes, thrombocytes, neutrophils, macrophages, neural stem cells, and cancer cells have shown great promise as drug delivery systems for IS treatment. By precisely controlling drug release rates and targeting specific sites in the brain, CMNVs enable the reduction in drug dosage and minimization of side effects, thus significantly enhancing therapeutic strategies and approaches for IS. While there are some reviews regarding the applications of CMNVs in the treatment of IS, there has been limited attention given to important aspects such as carrier construction, structural design, and functional modification. Therefore, this review aims to address these key issues in CMNVs preparation, structural composition, modification, and other relevant aspects, with a specific focus on targeted therapy for IS. Finally, the challenges and prospects in this field are discussed.
Collapse
Affiliation(s)
- Cui Hao
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (H.C.); (S.M.); (Y.Y.)
| | - Ma Sha
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (H.C.); (S.M.); (Y.Y.)
| | - Yang Ye
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (H.C.); (S.M.); (Y.Y.)
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (H.C.); (S.M.); (Y.Y.)
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| |
Collapse
|