1
|
Current Solution NMR Techniques for Structure-Function Studies of Proteins and RNA Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1105:43-58. [DOI: 10.1007/978-981-13-2200-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
2
|
Rozentur-Shkop E, Goobes G, Chill JH. A J-modulated protonless NMR experiment characterizes the conformational ensemble of the intrinsically disordered protein WIP. JOURNAL OF BIOMOLECULAR NMR 2016; 66:243-257. [PMID: 27844185 DOI: 10.1007/s10858-016-0073-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
Intrinsically disordered proteins (IDPs) are multi-conformational polypeptides that lack a single stable three-dimensional structure. It has become increasingly clear that the versatile IDPs play key roles in a multitude of biological processes, and, given their flexible nature, NMR is a leading method to investigate IDP behavior on the molecular level. Here we present an IDP-tailored J-modulated experiment designed to monitor changes in the conformational ensemble characteristic of IDPs by accurately measuring backbone one- and two-bond J(15N,13Cα) couplings. This concept was realized using a unidirectional (H)NCO 13C-detected experiment suitable for poor spectral dispersion and optimized for maximum coverage of amino acid types. To demonstrate the utility of this approach we applied it to the disordered actin-binding N-terminal domain of WASp interacting protein (WIP), a ubiquitous key modulator of cytoskeletal changes in a range of biological systems. One- and two-bond J(15N,13Cα) couplings were acquired for WIP residues 2-65 at various temperatures, and in denaturing and crowding environments. Under native conditions fitted J-couplings identified in the WIP conformational ensemble a propensity for extended conformation at residues 16-23 and 45-60, and a helical tendency at residues 28-42. These findings are consistent with a previous study of the based upon chemical shift and RDC data and confirm that the WIP2-65 conformational ensemble is biased towards the structure assumed by this fragment in its actin-bound form. The effects of environmental changes upon this ensemble were readily apparent in the J-coupling data, which reflected a significant decrease in structural propensity at higher temperatures, in the presence of 8 M urea, and under the influence of a bacterial cell lysate. The latter suggests that crowding can cause protein unfolding through protein-protein interactions that stabilize the unfolded state. We conclude that J-couplings are a useful measureable in characterizing structural ensembles in IDPs, and that the proposed experiment provides a practical method for accurately performing such measurements, once again emphasizing the power of NMR in studying IDP behavior.
Collapse
Affiliation(s)
| | - Gil Goobes
- Department of Chemistry, Bar Ilan University, 52900, Ramat Gan, Israel
| | - Jordan H Chill
- Department of Chemistry, Bar Ilan University, 52900, Ramat Gan, Israel.
| |
Collapse
|
3
|
Allosteric regulation of E2:E3 interactions promote a processive ubiquitination machine. EMBO J 2013; 32:2504-16. [PMID: 23942235 PMCID: PMC3770950 DOI: 10.1038/emboj.2013.174] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/12/2013] [Indexed: 01/07/2023] Open
Abstract
RING finger proteins constitute the large majority of ubiquitin ligases (E3s) and function by interacting with ubiquitin-conjugating enzymes (E2s) charged with ubiquitin. How low-affinity RING-E2 interactions result in highly processive substrate ubiquitination is largely unknown. The RING E3, gp78, represents an excellent model to study this process. gp78 includes a high-affinity secondary binding region for its cognate E2, Ube2g2, the G2BR. The G2BR allosterically enhances RING:Ube2g2 binding and ubiquitination. Structural analysis of the RING:Ube2g2:G2BR complex reveals that a G2BR-induced conformational effect at the RING:Ube2g2 interface is necessary for enhanced binding of RING to Ube2g2 or Ube2g2 conjugated to Ub. This conformational effect and a key ternary interaction with conjugated ubiquitin are required for ubiquitin transfer. Moreover, RING:Ube2g2 binding induces a second allosteric effect, disrupting Ube2g2:G2BR contacts, decreasing affinity and facilitating E2 exchange. Thus, gp78 is a ubiquitination machine where multiple E2-binding sites coordinately facilitate processive ubiquitination.
Collapse
|
4
|
de Oliveira AL, Gallo M, Pazzagli L, Benedetti CE, Cappugi G, Scala A, Pantera B, Spisni A, Pertinhez TA, Cicero DO. The structure of the elicitor Cerato-platanin (CP), the first member of the CP fungal protein family, reveals a double ψβ-barrel fold and carbohydrate binding. J Biol Chem 2011; 286:17560-8. [PMID: 21454637 DOI: 10.1074/jbc.m111.223644] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cerato-platanin (CP) is a secretion protein produced by the fungal pathogen Ceratocystis platani, the causal agent of the plane canker disease and the first member of the CP family. CP is considered a pathogen-associated molecular pattern because it induces various defense responses in the host, including production of phytoalexins and cell death. Although much is known about the properties of CP and related proteins as elicitors of plant defense mechanisms, its biochemical activity and host target(s) remain elusive. Here, we present the three-dimensional structure of CP. The protein, which exhibits a remarkable pH and thermal stability, has a double ψβ-barrel fold quite similar to those found in expansins, endoglucanases, and the plant defense protein barwin. Interestingly, although CP lacks lytic activity against a variety of carbohydrates, it binds oligosaccharides. We identified the CP region responsible for binding as a shallow surface located at one side of the β-barrel. Chemical shift perturbation of the protein amide protons, induced by oligo-N-acetylglucosamines of various size, showed that all the residues involved in oligosaccharide binding are conserved among the members of the CP family. Overall, the results suggest that CP might be involved in polysaccharide recognition and that the double ψβ-barrel fold is widespread in distantly related organisms, where it is often involved in host-microbe interactions.
Collapse
|
5
|
Liu Y, Prestegard JH. Measurement of one and two bond N-C couplings in large proteins by TROSY-based J-modulation experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2009; 200:109-18. [PMID: 19581113 PMCID: PMC2763284 DOI: 10.1016/j.jmr.2009.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 05/18/2009] [Accepted: 06/12/2009] [Indexed: 05/11/2023]
Abstract
Residual dipolar couplings (RDCs) between NC' and NC(alpha) atoms in polypeptide backbones of proteins contain information on the orientation of bond vectors that is complementary to that contained in NH RDCs. The (1)J(NC)(alpha) and (2)J(NC)(alpha) scalar couplings between these atoms also display a Karplus relation with the backbone torsion angles and report on secondary structure. However, these N-C couplings tend to be small and they are frequently unresolvable in frequency domain spectra having the broad lines characteristic of large proteins. Here a TROSY-based J-modulated approach for the measurement of small (15)N-(13)C couplings in large proteins is described. The cross-correlation interference effects inherent in TROSY methods improve resolution and signal to noise ratios for large proteins, and the use of J-modulation to encode couplings eliminates the need to remove frequency distortions from overlapping peaks during data analysis. The utility of the method is demonstrated by measurement of (1)J(NC'), (1)J(NC)(alpha) , and (2)J(NC)(alpha) scalar couplings and (1)D(NC') and D(NC)(alpha) residual dipolar couplings for the myristoylated yeast ARF1.GTPgammas protein bound to small lipid bicelles, a system with an effective molecule weight of approximately 70kDa.
Collapse
|
6
|
The High-Precision Solution Structure of Yersinia Modulating Protein YmoA Provides Insight into Interaction with H-NS. Biochemistry 2007; 46:13975-82. [DOI: 10.1021/bi701210j] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Eliseo T, Ragona L, Catalano M, Assfalg M, Paci M, Zetta L, Molinari H, Cicero DO. Structural and dynamic determinants of ligand binding in the ternary complex of chicken liver bile acid binding protein with two bile salts revealed by NMR. Biochemistry 2007; 46:12557-67. [PMID: 17929837 DOI: 10.1021/bi7013085] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bile acids are physiological detergents facilitating absorption, transport, and distribution of lipid-soluble vitamins and dietary fats;they also play a role as signaling molecules that activate nuclear receptors and regulate cholesterol metabolism. Bile acid circulation is mediated by bile acid binding proteins (BABPs), and a detailed structural study of the complex of BABPs with bile salts has become a key issue for the complete understanding of the role of these proteins and their involvement in cholesterol homeostasis. The solution structure here reported describes, at variance with previously determined singly ligated structures, a BABP in a ternary complex with two bile acid molecules, obtained by employing a variety of NMR experiments. Exchange processes between the two bound chenodeoxycholate molecules as well as the more superficial ligand and the free pool have been detected through ROESY and diffusion experiments. Significant backbone flexibility has been observed in regions located at the protein open end, facilitating bile salts exchange. A detailed description of the protonation states and tautomeric forms of histidines strongly supports the view that histidine protonation modulates backbone flexibility and regulates ligand binding. This structure opens the way to targeted site-directed mutagenesis and interaction studies to investigate both binding and nuclear localization mechanisms.
Collapse
Affiliation(s)
- Tommaso Eliseo
- NMR Laboratory, Department of Chemical Science and Technology, University of Rome Tor Vergata, 00133 Roma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
8
|
McFeeters RL, Xiong C, O'Keefe BR, Bokesch HR, McMahon JB, Ratner DM, Castelli R, Seeberger PH, Byrd RA. The novel fold of scytovirin reveals a new twist for antiviral entry inhibitors. J Mol Biol 2007; 369:451-61. [PMID: 17434526 PMCID: PMC2696897 DOI: 10.1016/j.jmb.2007.03.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 03/06/2007] [Accepted: 03/13/2007] [Indexed: 11/20/2022]
Abstract
The solution structure of the potent 95 residue anti-HIV protein scytovirin has been determined and two carbohydrate-binding sites have been identified. This unique protein, containing five structurally important disulfide bonds, demonstrates a novel fold with no elements of extended regular secondary structure. Scytovirin contains two 39 residue sequence repeats, differing in only three amino acid residues, and each repeat has primary sequence similarity to chitin binding proteins. Both sequence repeats form similarly structured domains, with the exception of one region. The result is two carbohydrate-binding sites with substantially different affinities. The unusual fold clusters aromatic residues in both sites, suggesting a binding mechanism similar to other known hevein-like carbohydrate-binding proteins but differing in carbohydrate specificity. Scytovirin, originally isolated from the cyanobacterium Scytonema varium, holds potential as an HIV entry inhibitor for both therapeutic and prophylactic anti-HIV applications. The high-resolution structural studies reported are an important initial step in unlocking the therapeutic potential of scytovirin.
Collapse
Affiliation(s)
- Robert. L. McFeeters
- Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD, 21702-1201, USA
| | - Changyun Xiong
- Molecular Targets Development Program, National Cancer Institute, Frederick, MD, 21702-1201, USA
| | - Barry R. O'Keefe
- Molecular Targets Development Program, National Cancer Institute, Frederick, MD, 21702-1201, USA
| | - Heidi R. Bokesch
- Molecular Targets Development Program, National Cancer Institute, Frederick, MD, 21702-1201, USA
- SAIC-Frederick, National Cancer Institute, Frederick, MD, 21702-1201, USA
| | - James B. McMahon
- Molecular Targets Development Program, National Cancer Institute, Frederick, MD, 21702-1201, USA
| | - Daniel M. Ratner
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | | | - Peter H. Seeberger
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - R. Andrew Byrd
- Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD, 21702-1201, USA
- Author to whom correspondence should be sent
| |
Collapse
|
9
|
de Alba E, Tjandra N. On the accurate measurement of amide one-bond 15N-1H couplings in proteins: effects of cross-correlated relaxation, selective pulses and dynamic frequency shifts. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2006; 183:160-5. [PMID: 16949845 DOI: 10.1016/j.jmr.2006.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 08/10/2006] [Accepted: 08/14/2006] [Indexed: 05/11/2023]
Abstract
Amide one-bond 15N-1H scalar couplings of 15N- and [15N,2H]-isotopically enriched ubiquitin have been measured with the Quantitative J approach by monitoring NMR signal intensity modulation. Scalar couplings of the non-deuterated protein are in average approximately 0.6 Hz larger than values of deuterated ubiquitin. This deviation is 30 times the error derived from experiment reproducibility. Refocusing dipole/dipole cross-correlated relaxation decreases the discrepancy to approximately 0.1 Hz, suggesting that it likely originates from relaxation interference. Alternatively, the subtraction of J values obtained at different magnetic fields largely reduces the relaxation effects. In contrast, the dynamic frequency shift whose main contribution to 1J(15N-1H) arises from 15N chemical shielding anisotropy/NH dipole cross-correlation, is not eliminated by refocusing spin evolution under this interaction. Furthermore, the average difference of 1J(15N-1H) values at two magnetic fields closely agrees with the theoretical expected difference in the dynamic frequency shift.
Collapse
Affiliation(s)
- Eva de Alba
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Bethesda, MD 20892, USA.
| | | |
Collapse
|
10
|
Pennestri M, Melino S, Contessa GM, Casavola EC, Paci M, Ragnini-Wilson A, Cicero DO. Structural basis for the interaction of the myosin light chain Mlc1p with the myosin V Myo2p IQ motifs. J Biol Chem 2006; 282:667-79. [PMID: 17074768 DOI: 10.1074/jbc.m607016200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calmodulin, regulatory, and essential myosin light chain are evolutionary conserved proteins that, by binding to IQ motifs of target proteins, regulate essential intracellular processes among which are efficiency of secretory vesicles release at synapsis, intracellular signaling, and regulation of cell division. The yeast Saccharomyces cerevisiae calmodulin Cmd1 and the essential myosin light chain Mlc1p share the ability to interact with the class V myosin Myo2p and Myo4 and the class II myosin Myo1p. These myosins are required for vesicle, organelle, and mRNA transport, spindle orientation, and cytokinesis. We have used the budding yeast model system to study how calmodulin and essential myosin light chain selectively regulate class V myosin function. NMR structural analysis of uncomplexed Mlc1p and interaction studies with the first three IQ motifs of Myo2p show that the structural similarities between Mlc1p and the other members of the EF-hand superfamily of calmodulin-like proteins are mainly restricted to the C-lobe of these proteins. The N-lobe of Mlc1p presents a significantly compact and stable structure that is maintained both in the free and complexed states. The Mlc1p N-lobe interacts with the IQ motif in a manner that is regulated both by the IQ motifs sequence as well as by light chain structural features. These characteristic allows a distinctive interaction of Mlc1p with the first IQ motif of Myo2p when compared with calmodulin. This finding gives us a novel view of how calmodulin and essential light chain, through a differential binding to IQ1 of class V myosin motor, regulate this activity during vegetative growth and cytokinesis.
Collapse
Affiliation(s)
- Matteo Pennestri
- Department of Chemical Science and Technology, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
Residual Dipolar Couplings Report on the Active Conformation of Rhodopsin-Bound Protein Fragments. Top Curr Chem (Cham) 2006. [DOI: 10.1007/128_2006_088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Puttonen E, Tossavainen H, Permi P. Simultaneous determination of one- and two-bond scalar and residual dipolar couplings between 13C', 13Calpha and 15N spins in proteins. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2006; 44 Spec No:S168-76. [PMID: 16823899 DOI: 10.1002/mrc.1836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Four simple and sensitive HNCO-based methods for measurement of 1J(C'Calpha), 1J(NCalpha) and 2J(NCalpha) coupling constants in protein main chains are presented. Three of these experiments enable the simultaneous measurement of 1J(C'Calpha), 1J(NCalpha) and 2J(NCalpha) couplings. Exploitation of the E.COSY principle provides excellent dispersion of cross peaks in the resulting 3D spectra. The couplings can be retrieved with good accuracy from peak-to-peak separations. Karplus parameterizations are provided for 1J(NCalpha) and 2J(NCalpha), obtained from a nearly complete set of couplings of human ubiquitin. In addition, feasibility of the proposed methodology for measuring several residual dipolar couplings (RDCs) simultaneously is assessed.
Collapse
Affiliation(s)
- Eetu Puttonen
- NMR Laboratory, Program in Structural Biology and Biophysics, Institute of Biotechnology, P.O. Box 65, FI-00014, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
13
|
Modern High Resolution NMR for the Study of Structure, Dynamics and Interactions of Biological Macromolecules. Z PHYS CHEM 2006. [DOI: 10.1524/zpch.2006.220.5.567] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Ball G, Meenan N, Bromek K, Smith BO, Bella J, Uhrín D. Measurement of one-bond 13Calpha-1Halpha residual dipolar coupling constants in proteins by selective manipulation of CalphaHalpha spins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2006; 180:127-36. [PMID: 16495100 DOI: 10.1016/j.jmr.2006.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 01/24/2006] [Accepted: 01/31/2006] [Indexed: 05/06/2023]
Abstract
We have developed new 2D and 3D experiments for the measurement of C(alpha)-H(alpha) residual dipolar coupling constants in (13)C and (15)N labelled proteins. Two experiments, 2D (HNCO)-(J-CA)NH and 3D (HN)CO-(J-CA)NH, sample the C(alpha)-H(alpha) splitting by means of C(alpha) magnetization, while 2D (J-HACACO)NH and 3D J-HA(CACO)NH use H(alpha) magnetization to achieve a similar result. In the 2D experiments the coupling evolution is superimposed on the evolution of the (15)N chemical shifts and the IPAP principle is used to obtain (1)H-(15)N HSQC-like spectra from which the splitting is determined. The use of a third dimension in 3D experiments reduces spectral overlap to the point where use of an IPAP scheme may not be necessary. The length of the sampling interval in the J-dimension of these experiments is dictated solely by the relaxation properties of C(alpha) or H(alpha) nuclei. This was made possible by the use of C(alpha) selective pulses in combination with either a DPFGSE or modified BIRD pulses. Inclusion of these pulse sequence elements in the J-evolution periods removes unwanted spin-spin interactions. This allows prolonged sampling periods ( approximately 25 ms) yielding higher precision C(alpha)-H(alpha) splitting determination than is achievable with existing frequency based methods.
Collapse
Affiliation(s)
- Graeme Ball
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | | | | | | | | | | |
Collapse
|