1
|
Angulo J, Ardá A, Bertuzzi S, Canales A, Ereño-Orbea J, Gimeno A, Gomez-Redondo M, Muñoz-García JC, Oquist P, Monaco S, Poveda A, Unione L, Jiménez-Barbero J. NMR investigations of glycan conformation, dynamics, and interactions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:97-152. [PMID: 39645352 DOI: 10.1016/j.pnmrs.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 12/09/2024]
Abstract
Glycans are ubiquitous in nature, decorating our cells and serving as the initial points of contact with any visiting entities. These glycan interactions are fundamental to host-pathogen recognition and are related to various diseases, including inflammation and cancer. Therefore, understanding the conformations and dynamics of glycans, as well as the key features that regulate their interactions with proteins, is crucial for designing new therapeutics. Due to the intrinsic flexibility of glycans, NMR is an essential tool for unravelling these properties. In this review, we describe the key NMR parameters that can be extracted from the different experiments, and which allow us to deduce the necessary geometry and molecular motion information, with a special emphasis on assessing the internal motions of the glycosidic linkages. We specifically address the NMR peculiarities of various natural glycans, from histo-blood group antigens to glycosaminoglycans, and also consider the special characteristics of their synthetic analogues (glycomimetics). Finally, we discuss the application of NMR protocols to study glycan-related molecular recognition events, both from the carbohydrate and receptor perspectives, including the use of stable isotopes and paramagnetic NMR methods to overcome the inherent degeneracy of glycan chemical shifts.
Collapse
Affiliation(s)
- Jesús Angulo
- Institute for Chemical Research (IIQ), CSIC-University of Seville, 49 Américo Vespucio, 41092 Seville, Spain
| | - Ana Ardá
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Sara Bertuzzi
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Angeles Canales
- Departamento de Química Orgánica, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - June Ereño-Orbea
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Ana Gimeno
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Marcos Gomez-Redondo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Juan C Muñoz-García
- Institute for Chemical Research (IIQ), CSIC-University of Seville, 49 Américo Vespucio, 41092 Seville, Spain
| | - Paola Oquist
- Departamento de Química Orgánica, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - Serena Monaco
- School of Pharmacy, University of East Anglia, Norwich Research Park, NR47TJ Norwich, UK
| | - Ana Poveda
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Luca Unione
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Jesús Jiménez-Barbero
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain; Department of Organic & Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940 Leioa, Bizkaia, Spain; Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias, 28029 Madrid, Spain.
| |
Collapse
|
3
|
Xia Y, Zhu Q, Jun KY, Wang J, Gao X. Clean STD-NMR spectrum for improved detection of ligand-protein interactions at low concentration of protein. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2010; 48:918-924. [PMID: 20957656 DOI: 10.1002/mrc.2687] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Saturation transfer difference (STD)-NMR has been widely used to screen ligand compound libraries for their binding activities to proteins and to determine the binding epitopes of the ligands. We report herein, a Clean STD-NMR method developed to overcome false positives (artifacts) observed in the STD-NMR spectrum due to the power spillover of RF irradiation. The method achieved higher degree of resonance saturation through digital editing of two STD-NMR spectra to generate a concatenated difference spectrum and three times of sensitivity enhancement for a loose binding complex involving DNA oligonucleotide and an RNA-binding protein, CUGBP-1ab (25.2 kDa). The interesting binding characteristics of the complex dCTGTCT-CUGBP1ab were obtained. The method was applied to a mixture of small ligand and bovine serum albumin protein (BSA, 66.3 kDa), and detected the intermolecular contacts at a BSA concentration as low as 0.1 µM, a working concentration useful for the detection of proteins of low solubility at biologically relevant conditions.
Collapse
Affiliation(s)
- Youlin Xia
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA.
| | | | | | | | | |
Collapse
|
4
|
Kuntothom T, Raab M, Tvaroška I, Fort S, Pengthaisong S, Cañada J, Calle L, Jiménez-Barbero J, Ketudat Cairns JR, Hrmova M. Binding of β-d-Glucosides and β-d-Mannosides by Rice and Barley β-d-Glycosidases with Distinct Substrate Specificities. Biochemistry 2010; 49:8779-93. [DOI: 10.1021/bi101112c] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Teerachai Kuntothom
- School of Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Michal Raab
- Department of Structure and Function of Saccharides, Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Igor Tvaroška
- Department of Structure and Function of Saccharides, Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Sebastien Fort
- Centre de Recherches sur les Macromolecules Vegetales, Grenoble, France
| | - Salila Pengthaisong
- School of Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Javier Cañada
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Luis Calle
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | - James R. Ketudat Cairns
- School of Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Maria Hrmova
- Australian Centre for Plant Functional Genomics, University of Adelaide, Glen Osmond, Australia
| |
Collapse
|