1
|
Zaharias S, Zhang Z, Davis K, Fargason T, Cashman D, Yu T, Zhang J. Intrinsically disordered electronegative clusters improve stability and binding specificity of RNA-binding proteins. J Biol Chem 2021; 297:100945. [PMID: 34246632 PMCID: PMC8348266 DOI: 10.1016/j.jbc.2021.100945] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 11/25/2022] Open
Abstract
RNA-binding proteins play crucial roles in various cellular functions and contain abundant disordered protein regions. The disordered regions in RNA-binding proteins are rich in repetitive sequences, such as poly-K/R, poly-N/Q, poly-A, and poly-G residues. Our bioinformatic analysis identified a largely neglected repetitive sequence family we define as electronegative clusters (ENCs) that contain acidic residues and/or phosphorylation sites. The abundance and length of ENCs exceed other known repetitive sequences. Despite their abundance, the functions of ENCs in RNA-binding proteins are still elusive. To investigate the impacts of ENCs on protein stability, RNA-binding affinity, and specificity, we selected one RNA-binding protein, the ribosomal biogenesis factor 15 (Nop15), as a model. We found that the Nop15 ENC increases protein stability and inhibits nonspecific RNA binding, but minimally interferes with specific RNA binding. To investigate the effect of ENCs on sequence specificity of RNA binding, we grafted an ENC to another RNA-binding protein, Ser/Arg-rich splicing factor 3. Using RNA Bind-n-Seq, we found that the engineered ENC inhibits disparate RNA motifs differently, instead of weakening all RNA motifs to the same extent. The motif site directly involved in electrostatic interaction is more susceptible to the ENC inhibition. These results suggest that one of functions of ENCs is to regulate RNA binding via electrostatic interaction. This is consistent with our finding that ENCs are also overrepresented in DNA-binding proteins, whereas underrepresented in halophiles, in which nonspecific nucleic acid binding is inhibited by high concentrations of salts.
Collapse
Affiliation(s)
- Steve Zaharias
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zihan Zhang
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kenneth Davis
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Talia Fargason
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Derek Cashman
- Department of Chemistry, Tennessee Technological University, Cookeville, Tennessee, USA
| | - Tao Yu
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota, USA
| | - Jun Zhang
- Department of Chemistry, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
2
|
Liu Z, Dong X, Yi HW, Yang J, Gong Z, Wang Y, Liu K, Zhang WP, Tang C. Structural basis for the recognition of K48-linked Ub chain by proteasomal receptor Rpn13. Cell Discov 2019; 5:19. [PMID: 30962947 PMCID: PMC6443662 DOI: 10.1038/s41421-019-0089-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 01/18/2023] Open
Abstract
The interaction between K48-linked ubiquitin (Ub) chain and Rpn13 is important for proteasomal degradation of ubiquitinated substrate proteins. Only the complex structure between the N-terminal domain of Rpn13 (Rpn13NTD) and Ub monomer has been characterized, while it remains unclear how Rpn13 specifically recognizes K48-linked Ub chain. Using single-molecule FRET, here we show that K48-linked diubiquitin (K48-diUb) fluctuates among distinct conformational states, and a preexisting compact state is selectively enriched by Rpn13NTD. The same binding mode is observed for full-length Rpn13 and longer K48-linked Ub chain. Using solution NMR spectroscopy, we have determined the complex structure between Rpn13NTD and K48-diUb. In this structure, Rpn13NTD simultaneously interacts with proximal and distal Ub subunits of K48-diUb that remain associated in the complex, thus corroborating smFRET findings. The proximal Ub interacts with Rpn13NTD similarly as the Ub monomer in the known Rpn13NTD:Ub structure, while the distal Ub binds to a largely electrostatic surface of Rpn13NTD. Thus, a charge-reversal mutation in Rpn13NTD weakens the interaction between Rpn13 and K48-linked Ub chain, causing accumulation of ubiquitinated proteins. Moreover, physical blockage of the access of the distal Ub to Rpn13NTD with a proximity-attached Ub monomer can disrupt the interaction between Rpn13 and K48-diUb. Taken together, the bivalent interaction of K48-linked Ub chain with Rpn13 provides the structural basis for Rpn13 linkage selectivity, which opens a new window for modulating proteasomal function.
Collapse
Affiliation(s)
- Zhu Liu
- 1CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071 China.,2National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xu Dong
- 1CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071 China
| | - Hua-Wei Yi
- 1CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071 China.,3University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ju Yang
- 1CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071 China.,3University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhou Gong
- 1CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071 China
| | - Yi Wang
- 4Department of Pharmacology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of Ministry of Health of China, and Zhejiang Province Key Laboratory of Mental Disorder's Management, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310027 China
| | - Kan Liu
- 1CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071 China
| | - Wei-Ping Zhang
- 4Department of Pharmacology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of Ministry of Health of China, and Zhejiang Province Key Laboratory of Mental Disorder's Management, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310027 China
| | - Chun Tang
- 1CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071 China.,3University of Chinese Academy of Sciences, Beijing, 100049 China.,5Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei Province 430074 China
| |
Collapse
|
3
|
Jiang WX, Gu XH, Dong X, Tang C. Lanthanoid tagging via an unnatural amino acid for protein structure characterization. JOURNAL OF BIOMOLECULAR NMR 2017; 67:273-282. [PMID: 28365903 DOI: 10.1007/s10858-017-0106-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
Lanthanoid pseudo-contact shift (PCS) provides long-range structural information between a paramagnetic tag and protein nuclei. However, for proteins with native cysteines, site-specific attachment may only utilize functional groups orthogonal to sulfhydryl chemistry. Here we report two lanthanoid probes, DTTA-C3-yne and DTTA-C4-yne, which can be conjugated to an unnatural amino acid pAzF in the target protein via azide-alkyne cycloaddition. Demonstrated with ubiquitin and cysteine-containing enzyme EIIB, we show that large PCSs of distinct profiles can be generated for each tag/lanthanoid combination. The DTTA-based lanthanoid tags are associated with large magnetic susceptibility tensors owing to the rigidity of the tags. In particular, introduction of the DTTA-C3 tag affords intermolecular PCSs and enables structural characterization of a transient protein complex between ubiquitin and a UBA domain. Together, we have expanded the repertoire of paramagnetic tags and the applicability of paramagnetic NMR.
Collapse
Affiliation(s)
- Wen-Xue Jiang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin-Hua Gu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
| | - Xu Dong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, 430071, Hubei, China.
| | - Chun Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, 430071, Hubei, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Zhang C, Sun Q, Chen R, Chen X, Lin J, Ye K. Integrative structural analysis of the UTPB complex, an early assembly factor for eukaryotic small ribosomal subunits. Nucleic Acids Res 2016; 44:7475-86. [PMID: 27330138 PMCID: PMC5009746 DOI: 10.1093/nar/gkw562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/10/2016] [Indexed: 12/28/2022] Open
Abstract
Ribosome assembly is an essential and conserved cellular process in eukaryotes that requires numerous assembly factors. The six-subunit UTPB complex is an essential component of the 90S precursor of the small ribosomal subunit. Here, we analyzed the molecular architecture of UTPB using an integrative structural biology approach. We mapped the major interactions that associate each of six UTPB proteins. Crystallographic studies showed that Utp1, Utp21, Utp12 and Utp13 are evolutionarily related and form a dimer of dimers (Utp1–Utp21, Utp12–Utp13) through their homologous helical C-terminal domains. Molecular docking with crosslinking restraints showed that the WD domains of Utp12 and Utp13 are associated, as are the WD domains of Utp1, Utp21 and Utp18. Electron microscopy images of the entire UTPB complex revealed that it predominantly adopts elongated conformations and possesses internal flexibility. We also determined crystal structures of the WD domain of Utp18 and the HAT and deviant HAT domains of Utp6. A structural model of UTPB was derived based on these data.
Collapse
Affiliation(s)
- Cheng Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qi Sun
- National Institute of Biological Sciences, Beijing 102206, China Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China Beijing Key Laboratory of Noncoding RNA, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongchang Chen
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China Beijing Key Laboratory of Noncoding RNA, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xining Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jinzhong Lin
- National Institute of Biological Sciences, Beijing 102206, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China Beijing Key Laboratory of Noncoding RNA, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
5
|
Takemasa M, Nishinari K. Solution Structure of Molecular Associations Investigated Using NMR for Polysaccharides: Xanthan/Galactomannan Mixtures. J Phys Chem B 2016; 120:3027-37. [DOI: 10.1021/acs.jpcb.5b11665] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Makoto Takemasa
- School
of Creative Science and Engineering, Waseda University, Tokyo, Japan
| | | |
Collapse
|
6
|
de Vries SJ, Chauvot de Beauchêne I, Schindler CEM, Zacharias M. Cryo-EM Data Are Superior to Contact and Interface Information in Integrative Modeling. Biophys J 2016; 110:785-97. [PMID: 26846888 DOI: 10.1016/j.bpj.2015.12.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/18/2015] [Accepted: 12/14/2015] [Indexed: 12/29/2022] Open
Abstract
Protein-protein interactions carry out a large variety of essential cellular processes. Cryo-electron microscopy (cryo-EM) is a powerful technique for the modeling of protein-protein interactions at a wide range of resolutions, and recent developments have caused a revolution in the field. At low resolution, cryo-EM maps can drive integrative modeling of the interaction, assembling existing structures into the map. Other experimental techniques can provide information on the interface or on the contacts between the monomers in the complex. This inevitably raises the question regarding which type of data is best suited to drive integrative modeling approaches. Systematic comparison of the prediction accuracy and specificity of the different integrative modeling paradigms is unavailable to date. Here, we compare EM-driven, interface-driven, and contact-driven integrative modeling paradigms. Models were generated for the protein docking benchmark using the ATTRACT docking engine and evaluated using the CAPRI two-star criterion. At 20 Å resolution, EM-driven modeling achieved a success rate of 100%, outperforming the other paradigms even with perfect interface and contact information. Therefore, even very low resolution cryo-EM data is superior in predicting heterodimeric and heterotrimeric protein assemblies. Our study demonstrates that a force field is not necessary, cryo-EM data alone is sufficient to accurately guide the monomers into place. The resulting rigid models successfully identify regions of conformational change, opening up perspectives for targeted flexible remodeling.
Collapse
Affiliation(s)
- Sjoerd J de Vries
- Physik-Department T38, Technische Universität München, Garching, Germany.
| | | | - Christina E M Schindler
- Physik-Department T38, Technische Universität München, Garching, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Physics Department, Technische Universität München, Garching, Germany
| | - Martin Zacharias
- Physik-Department T38, Technische Universität München, Garching, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Physics Department, Technische Universität München, Garching, Germany
| |
Collapse
|
7
|
Liu L, Mayo DJ, Sahu ID, Zhou A, Zhang R, McCarrick RM, Lorigan GA. Determining the Secondary Structure of Membrane Proteins and Peptides Via Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy. Methods Enzymol 2015; 564:289-313. [PMID: 26477255 DOI: 10.1016/bs.mie.2015.06.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Revealing detailed structural and dynamic information of membrane embedded or associated proteins is challenging due to their hydrophobic nature which makes NMR and X-ray crystallographic studies challenging or impossible. Electron paramagnetic resonance (EPR) has emerged as a powerful technique to provide essential structural and dynamic information for membrane proteins with no size limitations in membrane systems which mimic their natural lipid bilayer environment. Therefore, tremendous efforts have been devoted toward the development and application of EPR spectroscopic techniques to study the structure of biological systems such as membrane proteins and peptides. This chapter introduces a novel approach established and developed in the Lorigan lab to investigate membrane protein and peptide local secondary structures utilizing the pulsed EPR technique electron spin echo envelope modulation (ESEEM) spectroscopy. Detailed sample preparation strategies in model membrane protein systems and the experimental setup are described. Also, the ability of this approach to identify local secondary structure of membrane proteins and peptides with unprecedented efficiency is demonstrated in model systems. Finally, applications and further developments of this ESEEM approach for probing larger size membrane proteins produced by overexpression systems are discussed.
Collapse
Affiliation(s)
- Lishan Liu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA.
| | - Daniel J Mayo
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Andy Zhou
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Rongfu Zhang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| |
Collapse
|
8
|
Liu Z, Gong Z, Dong X, Tang C. Transient protein-protein interactions visualized by solution NMR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:115-22. [PMID: 25896389 DOI: 10.1016/j.bbapap.2015.04.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 01/18/2023]
Abstract
Proteins interact with each other to establish their identities in cell. The affinities for the interactions span more than ten orders of magnitude, and KD values in μM-mM regimen are considered transient and are important in cell signaling. Solution NMR including diamagnetic and paramagnetic techniques has enabled atomic-resolution depictions of transient protein-protein interactions. Diamagnetic NMR allows characterization of protein complexes with KD values up to several mM, whereas ultraweak and fleeting complexes can be modeled with the use of paramagnetic NMR especially paramagnetic relaxation enhancement (PRE). When tackling ever-larger protein complexes, PRE can be particularly useful in providing long-range intermolecular distance restraints. As NMR measurements are averaged over the ensemble of complex structures, structural information for dynamic protein-protein interactions besides the stereospecific one can often be extracted. Herein the protein interaction dynamics are exemplified by encounter complexes, alternative binding modes, and coupled binding/folding of intrinsically disordered proteins. Further integration of NMR with other biophysical techniques should allow better visualization of transient protein-protein interactions. In particular, single-molecule data may facilitate the interpretation of ensemble-averaged NMR data. Though same structures of proteins and protein complexes were found in cell as in diluted solution, we anticipate that the dynamics of transient protein protein-protein interactions be different, which awaits awaits exploration by NMR. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions.
Collapse
Affiliation(s)
- Zhu Liu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310028, China; Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310028, China
| | - Zhou Gong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Xu Dong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Chun Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China.
| |
Collapse
|
9
|
Coffman K, Yang B, Lu J, Tetlow AL, Pelliccio E, Lu S, Guo DC, Tang C, Dong MQ, Tamanoi F. Characterization of the Raptor/4E-BP1 interaction by chemical cross-linking coupled with mass spectrometry analysis. J Biol Chem 2014; 289:4723-34. [PMID: 24403073 DOI: 10.1074/jbc.m113.482067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
mTORC1 plays critical roles in the regulation of protein synthesis, growth, and proliferation in response to nutrients, growth factors, and energy conditions. One of the substrates of mTORC1 is 4E-BP1, whose phosphorylation by mTORC1 reverses its inhibitory action on eIF4E, resulting in the promotion of protein synthesis. Raptor in mTOR complex 1 is believed to recruit 4E-BP1, facilitating phosphorylation of 4E-BP1 by the kinase mTOR. We applied chemical cross-linking coupled with mass spectrometry analysis to gain insight into interactions between mTORC1 and 4E-BP1. Using the cross-linking reagent bis[sulfosuccinimidyl] suberate, we showed that Raptor can be cross-linked with 4E-BP1. Mass spectrometric analysis of cross-linked Raptor-4E-BP1 led to the identification of several cross-linked peptide pairs. Compilation of these peptides revealed that the most N-terminal Raptor N-terminal conserved domain (in particular residues from 89 to 180) of Raptor is the major site of interaction with 4E-BP1. On 4E-BP1, we found that cross-links with Raptor were clustered in the central region (amino acid residues 56-72) we call RCR (Raptor cross-linking region). Intramolecular cross-links of Raptor suggest the presence of two structured regions of Raptor: one in the N-terminal region and the other in the C-terminal region. In support of the idea that the Raptor N-terminal conserved domain and the 4E-BP1 central region are closely located, we found that peptides that encompass the RCR of 4E-BP1 inhibit cross-linking and interaction of 4E-BP1 with Raptor. Furthermore, mutations of residues in the RCR decrease the ability of 4E-BP1 to serve as a substrate for mTORC1 in vitro and in vivo.
Collapse
Affiliation(s)
- Kimberly Coffman
- From the Department of Microbiology, Immunology, and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, California 90095
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Calabrese AN, Pukala TL. Chemical Cross-linking and Mass Spectrometry for the Structural Analysis of Protein Assemblies. Aust J Chem 2013. [DOI: 10.1071/ch13164] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cellular functions are performed and regulated at a molecular level by the coordinated action of intricate protein assemblies, and hence the study of protein folding, structure, and interactions is vital to the appreciation and understanding of complex biological problems. In the past decade, continued development of chemical cross-linking methodologies combined with mass spectrometry has seen this approach develop to enable detailed structural information to be elucidated for protein assemblies often intractable by traditional structural biology methods. In this review article, we describe recent advances in reagent design, cross-linking protocols, mass spectrometric analysis, and incorporation of cross-linking constraints into structural models, which are contributing to overcoming the intrinsic challenges of the cross-linking method. We also highlight pioneering applications of chemical cross-linking mass spectrometry approaches to the study of structure and function of protein assemblies.
Collapse
|
11
|
Kobashigawa Y, Saio T, Ushio M, Sekiguchi M, Yokochi M, Ogura K, Inagaki F. Convenient method for resolving degeneracies due to symmetry of the magnetic susceptibility tensor and its application to pseudo contact shift-based protein-protein complex structure determination. JOURNAL OF BIOMOLECULAR NMR 2012; 53:53-63. [PMID: 22487935 PMCID: PMC3351616 DOI: 10.1007/s10858-012-9623-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 03/27/2012] [Indexed: 05/14/2023]
Abstract
Pseudo contact shifts (PCSs) induced by paramagnetic lanthanide ions fixed in a protein frame provide long-range distance and angular information, and are valuable for the structure determination of protein-protein and protein-ligand complexes. We have been developing a lanthanide-binding peptide tag (hereafter LBT) anchored at two points via a peptide bond and a disulfide bond to the target proteins. However, the magnetic susceptibility tensor displays symmetry, which can cause multiple degenerated solutions in a structure calculation based solely on PCSs. Here we show a convenient method for resolving this degeneracy by changing the spacer length between the LBT and target protein. We applied this approach to PCS-based rigid body docking between the FKBP12-rapamycin complex and the mTOR FRB domain, and demonstrated that degeneracy could be resolved using the PCS restraints obtained from two-point anchored LBT with two different spacer lengths. The present strategy will markedly increase the usefulness of two-point anchored LBT for protein complex structure determination.
Collapse
Affiliation(s)
- Yoshihiro Kobashigawa
- Department of Structural Biology, Faculty of Advanced Life Science, Hokkaido University, N-21, W-11, Kita-ku, Sapporo, 001-0021 Japan
| | - Tomohide Saio
- Department of Structural Biology, Faculty of Advanced Life Science, Hokkaido University, N-21, W-11, Kita-ku, Sapporo, 001-0021 Japan
| | - Masahiro Ushio
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Mitsuhiro Sekiguchi
- Analysis and Pharmacokinetics Research Labs, Department of Drug Discovery, Astellas Pharma Inc., Tokyo, Japan
| | - Masashi Yokochi
- Department of Structural Biology, Faculty of Advanced Life Science, Hokkaido University, N-21, W-11, Kita-ku, Sapporo, 001-0021 Japan
| | - Kenji Ogura
- Department of Structural Biology, Faculty of Advanced Life Science, Hokkaido University, N-21, W-11, Kita-ku, Sapporo, 001-0021 Japan
| | - Fuyuhiko Inagaki
- Department of Structural Biology, Faculty of Advanced Life Science, Hokkaido University, N-21, W-11, Kita-ku, Sapporo, 001-0021 Japan
| |
Collapse
|
12
|
Liu Z, Zhang WP, Xing Q, Ren X, Liu M, Tang C. Noncovalent dimerization of ubiquitin. Angew Chem Int Ed Engl 2011; 51:469-72. [PMID: 22109817 PMCID: PMC3303887 DOI: 10.1002/anie.201106190] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/21/2011] [Indexed: 11/07/2022]
Abstract
Another kind of dynamics: Ubiquitin noncovalently dimerizes with a dissociation constant of approximately 5 mM. The two subunits adopt an array of relative orientations, utilizing an interface also for binding to other proteins (see picture). Quaternary fluctuation among members of the dimer ensemble constitutes a different kind of dynamics that complements the tertiary dynamics of each ubiquitin subunit.
Collapse
Affiliation(s)
- Zhu Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | | | | | | | | | | |
Collapse
|
13
|
Liu Z, Zhang WP, Xing Q, Ren X, Liu M, Tang C. Noncovalent Dimerization of Ubiquitin. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201106190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Saio T, Ogura K, Shimizu K, Yokochi M, Burke TR, Inagaki F. An NMR strategy for fragment-based ligand screening utilizing a paramagnetic lanthanide probe. JOURNAL OF BIOMOLECULAR NMR 2011; 51:395-408. [PMID: 21927934 PMCID: PMC3193990 DOI: 10.1007/s10858-011-9566-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 08/29/2011] [Indexed: 05/04/2023]
Abstract
A nuclear magnetic resonance-based ligand screening strategy utilizing a paramagnetic lanthanide probe is presented. By fixing a paramagnetic lanthanide ion to a target protein, a pseudo-contact shift (PCS) and a paramagnetic relaxation enhancement (PRE) can be observed for both the target protein and its bound ligand. Based on PRE and PCS information, the bound ligand is then screened from the compound library and the structure of the ligand-protein complex is determined. PRE is an isotropic paramagnetic effect observed within 30 Å from the lanthanide ion, and is utilized for the ligand screening in the present study. PCS is an anisotropic paramagnetic effect providing long-range (~40 Å) distance and angular information on the observed nuclei relative to the paramagnetic lanthanide ion, and utilized for the structure determination of the ligand-protein complex. Since a two-point anchored lanthanide-binding peptide tag is utilized for fixing the lanthanide ion to the target protein, this screening method can be generally applied to non-metal-binding proteins. The usefulness of this strategy was demonstrated in the case of the growth factor receptor-bound protein 2 (Grb2) Src homology 2 (SH2) domain and its low- and high-affinity ligands.
Collapse
Affiliation(s)
- Tomohide Saio
- Department of Structural Biology, Faculty of Advanced Life Science, Hokkaido University, N-21, W-11, Kita-ku, Sapporo, 001-0021 Japan
| | - Kenji Ogura
- Department of Structural Biology, Faculty of Advanced Life Science, Hokkaido University, N-21, W-11, Kita-ku, Sapporo, 001-0021 Japan
| | - Kazumi Shimizu
- Department of Structural Biology, Faculty of Advanced Life Science, Hokkaido University, N-21, W-11, Kita-ku, Sapporo, 001-0021 Japan
| | - Masashi Yokochi
- Department of Structural Biology, Faculty of Advanced Life Science, Hokkaido University, N-21, W-11, Kita-ku, Sapporo, 001-0021 Japan
| | - Terrence R. Burke
- National Cancer Institute at Frederick, Laboratory of Medicinal Chemistry, Center for Cancer Research, P. O. Box B, Frederick, MD 21702-1201 USA
| | - Fuyuhiko Inagaki
- Department of Structural Biology, Faculty of Advanced Life Science, Hokkaido University, N-21, W-11, Kita-ku, Sapporo, 001-0021 Japan
| |
Collapse
|
15
|
Shih ESC, Hwang MJ. On the use of distance constraints in protein-protein docking computations. Proteins 2011; 80:194-205. [DOI: 10.1002/prot.23179] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/24/2011] [Accepted: 09/04/2011] [Indexed: 12/29/2022]
|
16
|
Mitra P, Pal D. Combining Bayes classification and point group symmetry under Boolean framework for enhanced protein quaternary structure inference. Structure 2011; 19:304-12. [PMID: 21397182 DOI: 10.1016/j.str.2011.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 01/10/2011] [Accepted: 01/10/2011] [Indexed: 11/30/2022]
Abstract
Our ability to infer the protein quaternary structure automatically from atom and lattice information is inadequate, especially for weak complexes, and heteromeric quaternary structures. Several approaches exist, but they have limited performance. Here, we present a new scheme to infer protein quaternary structure from lattice and protein information, with all-around coverage for strong, weak and very weak affinity homomeric and heteromeric complexes. The scheme combines naive Bayes classifier and point group symmetry under Boolean framework to detect quaternary structures in crystal lattice. It consistently produces ≥90% coverage across diverse benchmarking data sets, including a notably superior 95% coverage for recognition heteromeric complexes, compared with 53% on the same data set by current state-of-the-art method. The detailed study of a limited number of prediction-failed cases offers interesting insights into the intriguing nature of protein contacts in lattice. The findings have implications for accurate inference of quaternary states of proteins, especially weak affinity complexes.
Collapse
Affiliation(s)
- Pralay Mitra
- Bioinformatics Centre, Supercomputer Education Research Centre, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
17
|
Petrotchenko EV, Borchers CH. Crosslinking combined with mass spectrometry for structural proteomics. MASS SPECTROMETRY REVIEWS 2010; 29:862-76. [PMID: 20730915 DOI: 10.1002/mas.20293] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The method of crosslinking combined with mass spectrometry is being gradually accepted as a technology enabling detailed structural information on proteins and protein complexes. Intrinsic challenges of the method, which have prevented its widespread use, are being progressively addressed by improvements in mass spectrometry instrumentation capabilities, by the development of new crosslinking reagents, and by the development of specialized software tools for processing of mass spectrometric crosslinking data. This review focuses on recent literature concerning the development of specialized crosslinking reagents and approaches for mass spectrometry-based applications. Critical features of crosslinking reagents for optimum mass spectrometric performance, such as isotopic coding, cleavability, affinity groups, structure of the linkers, and reactive groups, are assessed. Requirements for the design of crosslinking reagents to make them well suited for mass spectrometric detection and analysis are summarized.
Collapse
Affiliation(s)
- Evgeniy V Petrotchenko
- University of Victoria Proteomics Centre, 3101-4464 Markham Street, Victoria, British Columbia, Canada V8Z7X8
| | | |
Collapse
|
18
|
Leitner A, Walzthoeni T, Kahraman A, Herzog F, Rinner O, Beck M, Aebersold R. Probing native protein structures by chemical cross-linking, mass spectrometry, and bioinformatics. Mol Cell Proteomics 2010; 9:1634-49. [PMID: 20360032 PMCID: PMC2938055 DOI: 10.1074/mcp.r000001-mcp201] [Citation(s) in RCA: 374] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/30/2010] [Indexed: 12/16/2022] Open
Abstract
Chemical cross-linking of reactive groups in native proteins and protein complexes in combination with the identification of cross-linked sites by mass spectrometry has been in use for more than a decade. Recent advances in instrumentation, cross-linking protocols, and analysis software have led to a renewed interest in this technique, which promises to provide important information about native protein structure and the topology of protein complexes. In this article, we discuss the critical steps of chemical cross-linking and its implications for (structural) biology: reagent design and cross-linking protocols, separation and mass spectrometric analysis of cross-linked samples, dedicated software for data analysis, and the use of cross-linking data for computational modeling. Finally, the impact of protein cross-linking on various biological disciplines is highlighted.
Collapse
Affiliation(s)
- Alexander Leitner
- From the Institute of Molecular Systems Biology, Eidgenössiche Technische Hochschule (ETH) Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich, Switzerland
- Department of Analytical Chemistry and Food Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
| | - Thomas Walzthoeni
- From the Institute of Molecular Systems Biology, Eidgenössiche Technische Hochschule (ETH) Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich, Switzerland
- Ph.D. Program in Molecular Life Sciences, University of Zurich/ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Abdullah Kahraman
- From the Institute of Molecular Systems Biology, Eidgenössiche Technische Hochschule (ETH) Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich, Switzerland
| | - Franz Herzog
- From the Institute of Molecular Systems Biology, Eidgenössiche Technische Hochschule (ETH) Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich, Switzerland
| | - Oliver Rinner
- From the Institute of Molecular Systems Biology, Eidgenössiche Technische Hochschule (ETH) Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich, Switzerland
- Biognosys AG, Wolfgang-Pauli-Strasse 16, 8093 Zurich, Switzerland
| | - Martin Beck
- From the Institute of Molecular Systems Biology, Eidgenössiche Technische Hochschule (ETH) Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich, Switzerland
| | - Ruedi Aebersold
- From the Institute of Molecular Systems Biology, Eidgenössiche Technische Hochschule (ETH) Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich, Switzerland
- Faculty of Science, University of Zurich, Zurich, Switzerland, and
- Competence Center for Systems Physiology and Metabolic Diseases, Zurich, Switzerland
| |
Collapse
|
19
|
Saio T, Yokochi M, Kumeta H, Inagaki F. PCS-based structure determination of protein-protein complexes. JOURNAL OF BIOMOLECULAR NMR 2010; 46:271-80. [PMID: 20300805 PMCID: PMC2844537 DOI: 10.1007/s10858-010-9401-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 02/17/2010] [Indexed: 05/03/2023]
Abstract
A simple and fast nuclear magnetic resonance method for docking proteins using pseudo-contact shift (PCS) and (1)H(N)/(15)N chemical shift perturbation is presented. PCS is induced by a paramagnetic lanthanide ion that is attached to a target protein using a lanthanide binding peptide tag anchored at two points. PCS provides long-range (approximately 40 A) distance and angular restraints between the lanthanide ion and the observed nuclei, while the (1)H(N)/(15)N chemical shift perturbation data provide loose contact-surface information. The usefulness of this method was demonstrated through the structure determination of the p62 PB1-PB1 complex, which forms a front-to-back 20 kDa homo-oligomer. As p62 PB1 does not intrinsically bind metal ions, the lanthanide binding peptide tag was attached to one subunit of the dimer at two anchoring points. Each monomer was treated as a rigid body and was docked based on the backbone PCS and backbone chemical shift perturbation data. Unlike NOE-based structural determination, this method only requires resonance assignments of the backbone (1)H(N)/(15)N signals and the PCS data obtained from several sets of two-dimensional (15)N-heteronuclear single quantum coherence spectra, thus facilitating rapid structure determination of the protein-protein complex.
Collapse
Affiliation(s)
- Tomohide Saio
- Graduate School of Life Science, Hokkaido University, Sapporo, 001-0021 Japan
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 001-0021 Japan
| | - Masashi Yokochi
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 001-0021 Japan
| | - Hiroyuki Kumeta
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 001-0021 Japan
| | - Fuyuhiko Inagaki
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 001-0021 Japan
| |
Collapse
|
20
|
Yu D, Volkov AN, Tang C. Characterizing dynamic protein-protein interactions using differentially scaled paramagnetic relaxation enhancement. J Am Chem Soc 2010; 131:17291-7. [PMID: 19891483 DOI: 10.1021/ja906673c] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Paramagnetic relaxation enhancement (PRE) is a powerful NMR technique that allows direct visualization of minor species. The PRE is obtained by conjugating a paramagnetic probe, such as EDTA-Mn(2+), at a specific cysteine residue. For a fast exchange between major and minor species, the observed PRE rate approaches population-weighted average of PRE values for both states. We have employed a tripeptide of Cu(2+)-binding paramagnetic probe that yields a much weaker PRE effect than EDTA-Mn(2+) does. We show that by using two probes of different paramagnetic strengths attached at the same site, the relative population and exchange time scale can be extracted, providing that the dynamic event occurs in the second to millisecond regime. Hence, this improved PRE scheme, differentially scaled paramagnetic relaxation enhancement (DiSPRE), permits both temporal and spatial characterization of a dynamic system. When applying the DiSPRE scheme to reassess the weak interactions between the N-terminal domain of enzyme I and phosphocarrier protein (HPr) from the bacterial phosphotransferase system, we have identified a minor species of excited-state complex with a approximately 4% population and exchanging with the stereospecific complex at approximately 1100 s(-1). Such species is distinct from other encounter complexes previously characterized and is likely a result of promiscuity of the HPr binding interface.
Collapse
Affiliation(s)
- Dongmei Yu
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
21
|
Cano C, Brunner K, Baskaran K, Elsner R, Munte CE, Kalbitzer HR. Protein structure calculation with data imputation: the use of substitute restraints. JOURNAL OF BIOMOLECULAR NMR 2009; 45:397-411. [PMID: 19838807 DOI: 10.1007/s10858-009-9379-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Accepted: 09/17/2009] [Indexed: 05/28/2023]
Abstract
The amount of experimental restraints e.g., NOEs is often too small for calculating high quality three-dimensional structures by restrained molecular dynamics. Considering this as a typical missing value problem we propose here a model based data imputation technique that should lead to an improved estimation of the correct structure. The novel automated method implemented in AUREMOL makes a more efficient use of the experimental information to obtain NMR structures with higher accuracy. It creates a large set of substitute restraints that are used either alone or together with the experimental restraints. The new approach was successfully tested on three examples: firstly, the Ras-binding domain of Byr2 from Schizosaccharomyces pombe, the mutant HPr (H15A) from Staphylococcus aureus, and a X-ray structure of human ubiquitin. In all three examples, the quality of the resulting final bundles was improved considerably by the use of additional substitute restraints, as assessed quantitatively by the calculation of RMSD values to the "true" structure and NMR R-factors directly calculated from the original NOESY spectra or the published diffraction data.
Collapse
Affiliation(s)
- Carolina Cano
- Institut für Biophysik und physikalische Biochemie, University of Regensburg, Universitätstr. Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
22
|
United we stand: combining structural methods. Curr Opin Struct Biol 2008; 18:617-22. [DOI: 10.1016/j.sbi.2008.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 07/29/2008] [Indexed: 01/20/2023]
|
23
|
Igarashi S, Osawa M, Takeuchi K, Ozawa SI, Shimada I. Amino acid selective cross-saturation method for identification of proximal residue pairs in a protein-protein complex. J Am Chem Soc 2008; 130:12168-76. [PMID: 18707104 DOI: 10.1021/ja804062t] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe an NMR-based approach, the amino acid selective cross-saturation (ASCS) method, to identify the pairs of the interface residues of protein-protein complexes. ASCS uses a "cross-saturation (CS)-donor" protein, in which only one amino acid is selectively (1)H-labeled in a (2)H-background, and a "CS-acceptor" protein with uniform (2)H, (15)N labeling. Irradiation of the (1)H-labeled amino acid, which exists only in the donor, decreases the intensity of the (1)H- (15)N HSQC signals of the acceptor residues proximal to the (1)H-labeled CS-source residue(s) through the CS phenomenon. Given the three-dimensional structure of each protein in the complex, but not the complex structure, the combinatorial analysis of multiple ASCS results specify the CS-source residue(s), based on the spatial complementarity between the CS-source residues on the CS donor and the cross-saturated amide protons on the acceptor. NMR investigations of the labeling selectivity and efficiency in an E. coli host, which are critical for ASCS, revealed that Ala, Arg, His, Ile, Leu, Lys, Met, Phe, Pro, Trp, and Tyr are selectively labeled with a high (1)H/(2)H ratio. The observation of the ASCS was then confirmed using the known structure of the yeast ubiquitin (Ub) and yeast ubiquitin hydrolase 1 (YUH1). Conversely, reasonable candidates for the CS-source residues were suggested by the analysis of the ASCS results, with reference to the individual structures of YUH1 and Ub. The pairwise distance information between the CS-source residues and the cross-saturated amide groups obtained by ASCS will be useful for modeling protein-protein complexes.
Collapse
Affiliation(s)
- Shunsuke Igarashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
24
|
Rumpel S, Becker S, Zweckstetter M. High-resolution structure determination of the CylR2 homodimer using paramagnetic relaxation enhancement and structure-based prediction of molecular alignment. JOURNAL OF BIOMOLECULAR NMR 2008; 40:1-13. [PMID: 18026911 PMCID: PMC2758389 DOI: 10.1007/s10858-007-9204-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 09/14/2007] [Indexed: 05/25/2023]
Abstract
Structure determination of homooligomeric proteins by NMR spectroscopy is difficult due to the lack of chemical shift perturbation data, which is very effective in restricting the binding interface in heterooligomeric systems, and the difficulty of obtaining a sufficient number of intermonomer distance restraints. Here we solved the high-resolution solution structure of the 15.4 kDa homodimer CylR2, the regulator of cytolysin production from Enterococcus faecalis, which deviates by 1.1 angstroms from the previously determined X-ray structure. We studied the influence of different experimental information such as long-range distances derived from paramagnetic relaxation enhancement, residual dipolar couplings, symmetry restraints and intermonomer Nuclear Overhauser Effect restraints on the accuracy of the derived structure. In addition, we show that it is useful to combine experimental information with methods of ab initio docking when the available experimental data are not sufficient to obtain convergence to the correct homodimeric structure. In particular, intermonomer distances may not be required when residual dipolar couplings are compared to values predicted on the basis of the charge distribution and the shape of ab initio docking solutions.
Collapse
Affiliation(s)
- Sigrun Rumpel
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Gottingen, Germany
| | - Stefan Becker
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Gottingen, Germany
| | - Markus Zweckstetter
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Gottingen, Germany
| |
Collapse
|
25
|
Zhou HX, Qin S, Tjong H. Modeling Protein–Protein and Protein–Nucleic Acid Interactions: Structure, Thermodynamics, and Kinetics. ANNUAL REPORTS IN COMPUTATIONAL CHEMISTRY 2008. [DOI: 10.1016/s1574-1400(08)00004-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Liu S, Venot A, Meng L, Tian F, Moremen KW, Boons GJ, Prestegard JH. Spin-labeled analogs of CMP-NeuAc as NMR probes of the alpha-2,6-sialyltransferase ST6Gal I. CHEMISTRY & BIOLOGY 2007; 14:409-18. [PMID: 17462576 PMCID: PMC3968682 DOI: 10.1016/j.chembiol.2007.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 02/14/2007] [Accepted: 02/27/2007] [Indexed: 12/15/2022]
Abstract
Structural data on mammalian proteins are often difficult to obtain by conventional NMR approaches because of an inability to produce samples with uniform isotope labeling in bacterial expression hosts. Proteins with sparse isotope labels can be produced in eukaryotic hosts by using isotope-labeled forms of specific amino acids, but structural analysis then requires information from experiments other than nuclear Overhauser effects. One source of alternate structural information is distance-dependent perturbation of spin relaxation times by nitroxide spin-labeled analogs of natural protein ligands. Here, we introduce spin-labeled analogs of sugar nucleotide donors for sialyltransferases, specifically, CMP-TEMPO (CMP-4-O-[2,2,6,6-tetramethylpiperidine-1-oxyl]) and CMP-4carboxyTEMPO (CMP-4-O-[4-carboxy-2,2,6,6-tetramethylpiperidinine-1-oxyl]). An ability to identify resonances from active site residues and produce distance constraints is illustrated on a (15)N phenylalanine-labeled version of the structurally uncharacterized, alpha-2,6-linked sialyltransferase, ST6Gal I.
Collapse
Affiliation(s)
- Shan Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | |
Collapse
|