1
|
Nagaraj K, Priyanshi J, Govindasamy C, Sivakumar AS, Kamalesu S, Naman J, Dixitkumar M, Lokhandwala S, Parekh NM, Radha S, Uthra C, Vaishnavi E, Sakthinathan S, Chiu TW, Karuppiah C. Effect of hydrophobicity and size of the ligands on the intercalative binding interactions of some metallo-surfactants containing π-conjugated systems with yeast tRNA. J Biomol Struct Dyn 2024; 42:3949-3957. [PMID: 37254288 DOI: 10.1080/07391102.2023.2216783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023]
Abstract
The intercalative yeast t-RNA binding behavior of some metallo-surfactant complexes, Co(ip)2(TA)2](ClO4)3 (1) and [Co(dpq)2(TA)2](ClO4)3 (2) where TA = Tetradecylamine (Myristylamine), ip = imidazo[4,5-f][1,10]phenanthroline and dpq = dipyrido[3,2-d:2'-3'-f]quinoxaline containing π-conjugated systems (both below and above critical micelle concentration) have been investigated by means of absorption spectral titration, competitive binding, circular dichroism, cyclic voltammetry, and viscometry measurements. Absorption spectral titration results implicate yeast tRNA has significant effects on the binding behaviors of two surfactant complexes via intercalative mode showed a significant absorption band of hypochromicity with red shift. The intrinsic binding constant values below and above CMC were determined as Kb = 6.12 × 105 M-1, 2.31 × 106 M-1, for complex (1) and 7.23 × 105 M-1, 3.57 × 106 M-1, for complex (2). In both sets of complexes (1) and (2), the complexes bind more strongly to yeast tRNA in the above critical micelle concentration can be hydrophobic and confirm intercalation. Competitive displacement studies confirmed that complexes bind to yeast tRNA via intercalative mode. Cyclic voltammetry studies suggest the increasing amounts of yeast tRNA, the cathodic potential Epc for the two complexes shows a positive shift in peak potential indicated the process of binding via intercalation. These observations were further validated by CD, and hydrodynamic measurements. All these studies suggesting that a surfactant complex binds to yeast tRNA appear to be mainly intercalative because of hydrophobicity due to extending aromaticity of the π system of the ligand and planarity of the complex has a significant effect on tRNA binding affinity increasing in the order of complexes containing ligands ip < dpq.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Karuppiah Nagaraj
- SRICT-Institute of Science and Research, Department of Chemistry, UPL University of Sustainable Technology, Vataria, India
| | - Jigeshkumar Priyanshi
- SRICT-Institute of Science and Research, Department of Chemistry, UPL University of Sustainable Technology, Vataria, India
| | - Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Allur Subramaniyan Sivakumar
- Department of Orthopaedic Surgery, Dongtan Sacred Heart Hospital, Hallym University, College of Medicine, Hwaseong, Republic of Korea
| | - Supramanium Kamalesu
- Department of Chemistry, University of Science, Chandigarh University, Gharuan, India
| | - Jitendrabhai Naman
- SRICT-Institute of Science and Research, Department of Chemistry, UPL University of Sustainable Technology, Vataria, India
| | - Manojkumar Dixitkumar
- SRICT-Institute of Science and Research, Department of Chemistry, UPL University of Sustainable Technology, Vataria, India
| | - Snehal Lokhandwala
- Department of Environmental Science & Technology, UPL University of Sustainable Technology, Vataria, India
| | - Nikhil M Parekh
- SRICT-Institute of Science and Research, Department of Chemistry, UPL University of Sustainable Technology, Vataria, India
| | - Suriyan Radha
- Department of Chemistry, Saiva Bhanu Kshatriya College, Aruppukkottai, India
| | - Chandrabose Uthra
- Department of Microbiology, Bharathidasan University, Tiruchirapalli, India
| | - Ellappan Vaishnavi
- Department of Chemistry, Sri GVG Visalakshi College for Women, Udumalpet, India
| | - Subramanian Sakthinathan
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan, ROC
| | - Te-Wei Chiu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan, ROC
| | - Chelladurai Karuppiah
- Battery Research Center for Green Energy, Ming Chi University of Technology, New Taipei City, Taiwan, ROC
| |
Collapse
|
2
|
Quraishi S, Saha D, Kumari K, Jha AN, Roy AS. Non-covalent binding interaction of bioactive coumarin esculetin with calf thymus DNA and yeast transfer RNA: A detailed investigation to decipher the binding affinities, binding location, interacting forces and structural alterations at a molecular level. Int J Biol Macromol 2024; 257:128568. [PMID: 38061533 DOI: 10.1016/j.ijbiomac.2023.128568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
Esculetin is a well-known coumarin derivative found abundantly in nature possessing an extensive array of pharmacological and therapeutic properties. Consequently, to comprehend its molecular recognition mechanism, our objective is to conduct a complete investigation of its interactions with the nucleic acid, specifically ct-DNA, and t-RNA, using spectroscopic and computational techniques. The intrinsic fluorescence of esculetin is quenched when it interacts with ct-DNA and t-RNA, and this occurs through a static quenching mechanism. The thermodynamic parameters demonstrated that the interaction is influenced by hydrogen bonding and weak van der Waals forces. CD and FT-IR results revealed no conformational changes in ct-DNA and t-RNA structure on binding with esculetin. Furthermore, competitive displacement assay with ethidium bromide, melting temperature, viscosity measurement, and potassium iodide quenching experiments, reflected that esculetin probably binds to the minor groove of ct-DNA. The molecular docking results provided further confirmation for the spectroscopic findings, including the binding location of esculetin and binding energies of esculetin complexes with ct-DNA and t-RNA. Molecular dynamics simulation studies demonstrated the conformational stability and flexibility of nucleic acids.
Collapse
Affiliation(s)
- Sana Quraishi
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, India
| | - Debanjan Saha
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, India
| | - Kalpana Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Anupam Nath Jha
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, India.
| | - Atanu Singha Roy
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, India.
| |
Collapse
|
3
|
Rapid and accurate determination of atomistic RNA dynamic ensemble models using NMR and structure prediction. Nat Commun 2020; 11:5531. [PMID: 33139729 PMCID: PMC7608651 DOI: 10.1038/s41467-020-19371-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/07/2020] [Indexed: 11/08/2022] Open
Abstract
Biomolecules form dynamic ensembles of many inter-converting conformations which are key for understanding how they fold and function. However, determining ensembles is challenging because the information required to specify atomic structures for thousands of conformations far exceeds that of experimental measurements. We addressed this data gap and dramatically simplified and accelerated RNA ensemble determination by using structure prediction tools that leverage the growing database of RNA structures to generate a conformation library. Refinement of this library with NMR residual dipolar couplings provided an atomistic ensemble model for HIV-1 TAR, and the model accuracy was independently supported by comparisons to quantum-mechanical calculations of NMR chemical shifts, comparison to a crystal structure of a substate, and through designed ensemble redistribution via atomic mutagenesis. Applications to TAR bulge variants and more complex tertiary RNAs support the generality of this approach and the potential to make the determination of atomic-resolution RNA ensembles routine. Determining dynamic ensembles of biomolecules is still challenging. Here the authors present an approach for rapid RNA ensemble determination that combines RNA structure prediction tools and NMR residual dipolar coupling data and use it to determine atomistic ensemble models for a variety of RNAs.
Collapse
|
4
|
Charak S, Shandilya M, Mehrotra R. RNA targeting by an anthracycline drug: spectroscopic and in silico evaluation of epirubicin interaction with tRNA. J Biomol Struct Dyn 2019; 38:1761-1771. [PMID: 31084352 DOI: 10.1080/07391102.2019.1617786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Anthracyclines are putative anticancer agents used to treat a wide range of cancers. Among these anthracyclines, epirubicin is derived from the doxorubicin by the subtle difference in the orientation of C4-hydroxyl group at sugar molecule. Epirubicin has great significance as it has propitious anticancer potential with lesser cardiotoxicity and faster elimination from the body. The present study is done to understand the molecular aspect of epirubicin binding to tRNA. We have used various spectroscopic techniques like Fourier transform infrared spectroscopy (FTIR), absorption spectroscopy and circular dichroism to illustrate the binding sites, the extent of binding and conformational changes associated with tRNA after interacting with epirubicin. From infrared studies, we infer that epirubicin interacts with guanine and uracil bases of tRNA. Results obtained from infrared and CD studies suggest that epirubicin complexation with tRNA does not result in any conformational change in tRNA structure. Binding constant (2.1 × 103 M-1) calculated from the absorbance data illustrates that epirubicin has a weak interaction with tRNA molecule. These spectroscopic results like the binding site of epirubicin and binding energy of epirubicin-tRNA complex were also verified by the molecular docking. Results of the present study provide information that aids in the development of efficient RNA targeted drugs from the existing drugs by certain chemical modification in their structure resulting in lesser side effects and better efficacy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sonika Charak
- Physico Mechanical Metrology Division, CSIR-National Physical Laboratory, New Delhi, India
| | - Manish Shandilya
- Amity School of Applied Sciences, Amity University Haryana, Gurgaon, India
| | - Ranjana Mehrotra
- Physico Mechanical Metrology Division, CSIR-National Physical Laboratory, New Delhi, India
| |
Collapse
|
5
|
Merriman DK, Yuan J, Shi H, Majumdar A, Herschlag D, Al-Hashimi HM. Increasing the length of poly-pyrimidine bulges broadens RNA conformational ensembles with minimal impact on stacking energetics. RNA (NEW YORK, N.Y.) 2018; 24:1363-1376. [PMID: 30012568 PMCID: PMC6140463 DOI: 10.1261/rna.066258.118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/05/2018] [Indexed: 05/03/2023]
Abstract
Helical elements separated by bulges frequently undergo transitions between unstacked and coaxially stacked conformations during the folding and function of noncoding RNAs. Here, we examine the dynamic properties of poly-pyrimidine bulges of varying length (n = 1-4, 7) across a range of Mg2+ concentrations using HIV-1 TAR RNA as a model system and solution NMR spectroscopy. In the absence of Mg2+, helices linked by bulges with n ≥ 3 residues adopt predominantly unstacked conformations (stacked population <15%), whereas one-bulge and two-bulge motifs adopt predominantly stacked conformations (stacked population >74%). In the presence of 3 mM Mg2+, the helices predominantly coaxially stack (stacked population >84%), regardless of bulge length, and the midpoint for the Mg2+-dependent stacking transition is within threefold regardless of bulge length. In the absence of Mg2+, the difference between free energy of interhelical coaxial stacking across the bulge variants is estimated to be ∼2.9 kcal/mol, based on an NMR chemical shift mapping with stacking being more energetically disfavored for the longer bulges. This difference decreases to ∼0.4 kcal/mol in the presence of Mg2+ NMR RDCs and resonance intensity data show increased dynamics in the stacked state with increasing bulge length in the presence of Mg2+ We propose that Mg2+ helps to neutralize the growing electrostatic repulsion in the stacked state with increasing bulge length thereby increasing the number of coaxial conformations that are sampled. Energetically compensated interhelical stacking dynamics may help to maximize the conformational adaptability of RNA and allow a wide range of conformations to be optimally stabilized by proteins and ligands.
Collapse
Affiliation(s)
- Dawn K Merriman
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Jiayi Yuan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Honglue Shi
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Ananya Majumdar
- Biomolecular NMR Facility, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Hashim M Al-Hashimi
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
6
|
Basu P, Suresh Kumar G. Small molecule-RNA recognition: Binding of the benzophenanthridine alkaloids sanguinarine and chelerythrine to single stranded polyribonucleotides. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 174:173-181. [PMID: 28779690 DOI: 10.1016/j.jphotobiol.2017.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 01/18/2023]
Abstract
Single stranded RNAs are biologically potent as they participate in various key cellular processes. The binding efficacy of two potent anticancer alkaloids, sanguinarine (here after SANG) and chelerythrine (here after CHEL), with single-stranded ribonucleic acids poly(rI), poly(rG), and poly(rC) were studied using spectroscopic and thermodynamic tools. Results reveal that both SANG and CHEL binds well with single stranded RNAs with affinity in the order poly(rI)>poly(rG)>poly(rC). CHEL showed slightly higher affinity compared to SANG with all the single stranded RNAs. Both SANG and CHEL showed association affinity of the lower 106 order with poly(rI), higher 105 order binding with poly(rG) and lower 105 order with poly(rC). The binding mode was partial intercalation due to the staking interaction between the bases and the alkaloids. The complexation of both the SANG and CHEL to the RNAs were mainly enthalpy driven and also favoured by entropy changes. Perturbation was observed in the RNA conformation due to binding of the alkaloids. In this present study we have deciphered the fundamental structural and calorimetric aspects of the interaction of the natural benzophenanthridine alkaloids with single stranded RNAs and these results may help to develop new generation alkaloid based therapeutics targeting single stranded RNAs.
Collapse
Affiliation(s)
- Pritha Basu
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Gopinatha Suresh Kumar
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India.
| |
Collapse
|
7
|
Dršata T, Réblová K, Beššeová I, Šponer J, Lankaš F. rRNA C-Loops: Mechanical Properties of a Recurrent Structural Motif. J Chem Theory Comput 2017; 13:3359-3371. [DOI: 10.1021/acs.jctc.7b00061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomáš Dršata
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague, Czech Republic
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| | - Kamila Réblová
- CEITEC—Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Ivana Beššeová
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| | - Jiří Šponer
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
- CEITEC—Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Filip Lankaš
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague, Czech Republic
- Laboratory
of Informatics and Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| |
Collapse
|
8
|
Structural conservation in the template/pseudoknot domain of vertebrate telomerase RNA from teleost fish to human. Proc Natl Acad Sci U S A 2016; 113:E5125-34. [PMID: 27531956 DOI: 10.1073/pnas.1607411113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Telomerase is an RNA-protein complex that includes a unique reverse transcriptase that catalyzes the addition of single-stranded telomere DNA repeats onto the 3' ends of linear chromosomes using an integral telomerase RNA (TR) template. Vertebrate TR contains the template/pseudoknot (t/PK) and CR4/5 domains required for telomerase activity in vitro. All vertebrate pseudoknots include two subdomains: P2ab (helices P2a and P2b with a 5/6-nt internal loop) and the minimal pseudoknot (P2b-P3 and associated loops). A helical extension of P2a, P2a.1, is specific to mammalian TR. Using NMR, we investigated the structures of the full-length TR pseudoknot and isolated subdomains in Oryzias latipes (Japanese medaka fish), which has the smallest vertebrate TR identified to date. We determined the solution NMR structure and studied the dynamics of medaka P2ab, and identified all base pairs and tertiary interactions in the minimal pseudoknot. Despite differences in length and sequence, the structure of medaka P2ab is more similar to human P2ab than predicted, and the medaka minimal pseudoknot has the same tertiary interactions as the human pseudoknot. Significantly, although P2a.1 is not predicted to form in teleost fish, we find that it forms in the full-length pseudoknot via an unexpected hairpin. Model structures of the subdomains are combined to generate a model of t/PK. These results provide evidence that the architecture for the vertebrate t/PK is conserved from teleost fish to human. The organization of the t/PK on telomerase reverse transcriptase for medaka and human is modeled based on the cryoEM structure of Tetrahymena telomerase, providing insight into function.
Collapse
|
9
|
Merriman DK, Xue Y, Yang S, Kimsey IJ, Shakya A, Clay M, Al-Hashimi HM. Shortening the HIV-1 TAR RNA Bulge by a Single Nucleotide Preserves Motional Modes over a Broad Range of Time Scales. Biochemistry 2016; 55:4445-56. [PMID: 27232530 DOI: 10.1021/acs.biochem.6b00285] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Helix-junction-helix (HJH) motifs are flexible building blocks of RNA architecture that help define the orientation and dynamics of helical domains. They are also frequently involved in adaptive recognition of proteins and small molecules and in the formation of tertiary contacts. Here, we use a battery of nuclear magnetic resonance techniques to examine how deleting a single bulge residue (C24) from the human immunodeficiency virus type 1 (HIV-1) transactivation response element (TAR) trinucleotide bulge (U23-C24-U25) affects dynamics over a broad range of time scales. Shortening the bulge has an effect on picosecond-to-nanosecond interhelical and local bulge dynamics similar to that casued by increasing the Mg(2+) and Na(+) concentration, whereby a preexisting two-state equilibrium in TAR is shifted away from a bent flexible conformation toward a coaxial conformation, in which all three bulge residues are flipped out and flexible. Surprisingly, the point deletion minimally affects microsecond-to-millisecond conformational exchange directed toward two low-populated and short-lived excited conformational states that form through reshuffling of bases pairs throughout TAR. The mutant does, however, adopt a slightly different excited conformational state on the millisecond time scale, in which U23 is intrahelical, mimicking the expected conformation of residue C24 in the excited conformational state of wild-type TAR. Thus, minor changes in HJH topology preserve motional modes in RNA occurring over the picosecond-to-millisecond time scales but alter the relative populations of the sampled states or cause subtle changes in their conformational features.
Collapse
Affiliation(s)
- Dawn K Merriman
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Yi Xue
- Department of Biochemistry, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - Shan Yang
- Baxter Health Care (Suzhou) Company, Ltd. , Suzhou, Jiang Su 215028, China
| | - Isaac J Kimsey
- Department of Biochemistry, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - Anisha Shakya
- Department of Chemistry and Biophysics, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Mary Clay
- Department of Biochemistry, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - Hashim M Al-Hashimi
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States.,Department of Biochemistry, Duke University Medical Center , Durham, North Carolina 27710, United States
| |
Collapse
|
10
|
Structural and thermodynamic analysis of the binding of tRNAphe by the putative anticancer alkaloid chelerythrine: Spectroscopy, calorimetry and molecular docking studies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 161:335-44. [DOI: 10.1016/j.jphotobiol.2016.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 05/27/2016] [Indexed: 12/15/2022]
|
11
|
Cornilescu G, Didychuk AL, Rodgers ML, Michael LA, Burke JE, Montemayor EJ, Hoskins AA, Butcher SE. Structural Analysis of Multi-Helical RNAs by NMR-SAXS/WAXS: Application to the U4/U6 di-snRNA. J Mol Biol 2016; 428:777-789. [PMID: 26655855 PMCID: PMC4790120 DOI: 10.1016/j.jmb.2015.11.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/25/2015] [Accepted: 11/30/2015] [Indexed: 01/17/2023]
Abstract
NMR and SAXS (small-angle X-ray scattering)/WAXS (wide-angle X-ray scattering) are highly complementary approaches for the analysis of RNA structure in solution. Here we describe an efficient NMR-SAXS/WAXS approach for structural investigation of multi-helical RNAs. We illustrate this approach by determining the overall fold of a 92-nt 3-helix junction from the U4/U6 di-snRNA. The U4/U6 di-snRNA is conserved in eukaryotes and is part of the U4/U6.U5 tri-snRNP, a large ribonucleoprotein complex that comprises a major subunit of the assembled spliceosome. Helical orientations can be determined by X-ray scattering data alone, but the addition of NMR RDC (residual dipolar coupling) restraints improves the structure models. RDCs were measured in two different external alignment media and also by magnetic susceptibility anisotropy. The resulting alignment tensors are collinear, which is a previously noted problem for nucleic acids. Including WAXS data in the calculations produces models with significantly better fits to the scattering data. In solution, the U4/U6 di-snRNA forms a 3-helix junction with a planar Y-shaped structure and has no detectable tertiary interactions. Single-molecule Förster resonance energy transfer data support the observed topology. A comparison with the recently determined cryo-electron microscopy structure of the U4/U6.U5 tri-snRNP illustrates how proteins scaffold the RNA and dramatically alter the geometry of the U4/U6 3-helix junction.
Collapse
Affiliation(s)
- Gabriel Cornilescu
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Allison L Didychuk
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Margaret L Rodgers
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Lauren A Michael
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Jordan E Burke
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Eric J Montemayor
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
12
|
Kumar GS, Basu A. The use of calorimetry in the biophysical characterization of small molecule alkaloids binding to RNA structures. Biochim Biophys Acta Gen Subj 2015; 1860:930-944. [PMID: 26522497 DOI: 10.1016/j.bbagen.2015.10.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/06/2015] [Accepted: 10/27/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND RNA has now emerged as a potential target for therapeutic intervention. RNA targeted drug design requires detailed thermodynamic characterization that provides new insights into the interactions and this together with structural data, may be used in rational drug design. The use of calorimetry to characterize small molecule-RNA interactions has emerged as a reliable and sensitive tool after the recent advancements in biocalorimetry. SCOPE OF THE REVIEW This review summarizes the recent advancements in thermodynamic characterization of small molecules, particularly some natural alkaloids binding to various RNA structures. Thermodynamic characterization provides information that can supplement structural data leading to more effective drug development protocols. MAJOR CONCLUSIONS This review provides a concise report on the use of isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC) techniques in characterizing small molecules, mostly alkaloids-RNA interactions with particular reference to binding of tRNA, single stranded RNA, double stranded RNA, poly(A), triplex RNA. GENERAL SIGNIFICANCE It is now apparent that a combination of structural and thermodynamic data is essential for rational design of specific RNA targeted drugs. Recent advancements in biocalorimetry instrumentation have led to detailed understanding of the thermodynamics of small molecules binding to various RNA structures paving the path for the development of many new natural and synthetic molecules as specific binders to various RNA structures. RNA targeted drug design, that remained unexplored, will immensely benefit from the calorimetric studies leading to the development of effective drugs for many diseases.
Collapse
Affiliation(s)
- Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India.
| | - Anirban Basu
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| |
Collapse
|
13
|
Salmon L, Giambaşu GM, Nikolova EN, Petzold K, Bhattacharya A, Case DA, Al-Hashimi HM. Modulating RNA Alignment Using Directional Dynamic Kinks: Application in Determining an Atomic-Resolution Ensemble for a Hairpin using NMR Residual Dipolar Couplings. J Am Chem Soc 2015; 137:12954-65. [PMID: 26306428 PMCID: PMC4748170 DOI: 10.1021/jacs.5b07229] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Approaches that combine experimental data and computational molecular dynamics (MD) to determine atomic resolution ensembles of biomolecules require the measurement of abundant experimental data. NMR residual dipolar couplings (RDCs) carry rich dynamics information, however, difficulties in modulating overall alignment of nucleic acids have limited the ability to fully extract this information. We present a strategy for modulating RNA alignment that is based on introducing variable dynamic kinks in terminal helices. With this strategy, we measured seven sets of RDCs in a cUUCGg apical loop and used this rich data set to test the accuracy of an 0.8 μs MD simulation computed using the Amber ff10 force field as well as to determine an atomic resolution ensemble. The MD-generated ensemble quantitatively reproduces the measured RDCs, but selection of a sub-ensemble was required to satisfy the RDCs within error. The largest discrepancies between the RDC-selected and MD-generated ensembles are observed for the most flexible loop residues and backbone angles connecting the loop to the helix, with the RDC-selected ensemble resulting in more uniform dynamics. Comparison of the RDC-selected ensemble with NMR spin relaxation data suggests that the dynamics occurs on the ps-ns time scales as verified by measurements of R(1ρ) relaxation-dispersion data. The RDC-satisfying ensemble samples many conformations adopted by the hairpin in crystal structures indicating that intrinsic plasticity may play important roles in conformational adaptation. The approach presented here can be applied to test nucleic acid force fields and to characterize dynamics in diverse RNA motifs at atomic resolution.
Collapse
Affiliation(s)
- Loïc Salmon
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - George M. Giambaşu
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Evgenia N. Nikolova
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Katja Petzold
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | - David A. Case
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Hashim M. Al-Hashimi
- Department of Biochemistry and Chemistry, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
14
|
Yang S, Al-Hashimi HM. Unveiling Inherent Degeneracies in Determining Population-Weighted Ensembles of Interdomain Orientational Distributions Using NMR Residual Dipolar Couplings: Application to RNA Helix Junction Helix Motifs. J Phys Chem B 2015; 119:9614-26. [PMID: 26131693 DOI: 10.1021/acs.jpcb.5b03859] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A growing number of studies employ time-averaged experimental data to determine dynamic ensembles of biomolecules. While it is well-known that different ensembles can satisfy experimental data to within error, the extent and nature of these degeneracies, and their impact on the accuracy of the ensemble determination remains poorly understood. Here, we use simulations and a recently introduced metric for assessing ensemble similarity to explore degeneracies in determining ensembles using NMR residual dipolar couplings (RDCs) with specific application to A-form helices in RNA. Various target ensembles were constructed representing different domain-domain orientational distributions that are confined to a topologically restricted (<10%) conformational space. Five independent sets of ensemble averaged RDCs were then computed for each target ensemble and a "sample and select" scheme used to identify degenerate ensembles that satisfy RDCs to within experimental uncertainty. We find that ensembles with different ensemble sizes and that can differ significantly from the target ensemble (by as much as ∑Ω ∼ 0.4 where ∑Ω varies between 0 and 1 for maximum and minimum ensemble similarity, respectively) can satisfy the ensemble averaged RDCs. These deviations increase with the number of unique conformers and breadth of the target distribution, and result in significant uncertainty in determining conformational entropy (as large as 5 kcal/mol at T = 298 K). Nevertheless, the RDC-degenerate ensembles are biased toward populated regions of the target ensemble, and capture other essential features of the distribution, including the shape. Our results identify ensemble size as a major source of uncertainty in determining ensembles and suggest that NMR interactions such as RDCs and spin relaxation, on their own, do not carry the necessary information needed to determine conformational entropy at a useful level of precision. The framework introduced here provides a general approach for exploring degeneracies in ensemble determination for different types of experimental data.
Collapse
Affiliation(s)
- Shan Yang
- †Department of Biochemistry, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, United States
| | - Hashim M Al-Hashimi
- ‡Department of Biochemistry and Chemistry, Duke University Medical Center, Durham, North Carolina 27705, United States
| |
Collapse
|
15
|
Zhou H, Hintze BJ, Kimsey IJ, Sathyamoorthy B, Yang S, Richardson JS, Al-Hashimi HM. New insights into Hoogsteen base pairs in DNA duplexes from a structure-based survey. Nucleic Acids Res 2015; 43:3420-33. [PMID: 25813047 PMCID: PMC4402545 DOI: 10.1093/nar/gkv241] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/01/2015] [Indexed: 11/14/2022] Open
Abstract
Hoogsteen (HG) base pairs (bps) provide an alternative pairing geometry to Watson-Crick (WC) bps and can play unique functional roles in duplex DNA. Here, we use structural features unique to HG bps (syn purine base, HG hydrogen bonds and constricted C1'-C1' distance across the bp) to search for HG bps in X-ray structures of DNA duplexes in the Protein Data Bank. The survey identifies 106 A•T and 34 G•C HG bps in DNA duplexes, many of which are undocumented in the literature. It also uncovers HG-like bps with syn purines lacking HG hydrogen bonds or constricted C1'-C1' distances that are analogous to conformations that have been proposed to populate the WC-to-HG transition pathway. The survey reveals HG preferences similar to those observed for transient HG bps in solution by nuclear magnetic resonance, including stronger preferences for A•T versus G•C bps, TA versus GG steps, and also suggests enrichment at terminal ends with a preference for 5'-purine. HG bps induce small local perturbations in neighboring bps and, surprisingly, a small but significant degree of DNA bending (∼14°) directed toward the major groove. The survey provides insights into the preferences and structural consequences of HG bps in duplex DNA.
Collapse
Affiliation(s)
- Huiqing Zhou
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Bradley J Hintze
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Isaac J Kimsey
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | | | - Shan Yang
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | | | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University, Durham, NC 27710, USA Department of Chemistry, Duke University, Durham, NC 27708, USA
| |
Collapse
|
16
|
Mouzakis KD, Dethoff EA, Tonelli M, Al-Hashimi H, Butcher SE. Dynamic motions of the HIV-1 frameshift site RNA. Biophys J 2015; 108:644-54. [PMID: 25650931 PMCID: PMC4317556 DOI: 10.1016/j.bpj.2014.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 11/11/2014] [Accepted: 12/05/2014] [Indexed: 12/13/2022] Open
Abstract
The HIV-1 frameshift site (FS) plays a critical role in viral replication. During translation, the HIV-1 FS transitions from a 3-helix to a 2-helix junction RNA secondary structure. The 2-helix junction structure contains a GGA bulge, and purine-rich bulges are common motifs in RNA secondary structure. Here, we investigate the dynamics of the HIV-1 FS 2-helix junction RNA. Interhelical motions were studied under different ionic conditions using NMR order tensor analysis of residual dipolar couplings. In 150 mM potassium, the RNA adopts a 43°(±4°) interhelical bend angle (β) and displays large amplitude, anisotropic interhelical motions characterized by a 0.52(±0.04) internal generalized degree of order (GDOint) and distinct order tensor asymmetries for its two helices (η = 0.26(±0.04) and 0.5(±0.1)). These motions are effectively quenched by addition of 2 mM magnesium (GDOint = 0.87(±0.06)), which promotes a near-coaxial conformation (β = 15°(±6°)) of the two helices. Base stacking in the bulge was investigated using the fluorescent purine analog 2-aminopurine. These results indicate that magnesium stabilizes extrahelical conformations of the bulge nucleotides, thereby promoting coaxial stacking of helices. These results are highly similar to previous studies of the HIV transactivation response RNA, despite a complete lack of sequence similarity between the two RNAs. Thus, the conformational space of these RNAs is largely determined by the topology of their interhelical junctions.
Collapse
Affiliation(s)
- Kathryn D Mouzakis
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Elizabeth A Dethoff
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Marco Tonelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
17
|
Eichhorn CD, Al-Hashimi HM. Structural dynamics of a single-stranded RNA-helix junction using NMR. RNA (NEW YORK, N.Y.) 2014; 20:782-91. [PMID: 24742933 PMCID: PMC4024633 DOI: 10.1261/rna.043711.113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Many regulatory RNAs contain long single strands (ssRNA) that adjoin secondary structural elements. Here, we use NMR spectroscopy to study the dynamic properties of a 12-nucleotide (nt) ssRNA tail derived from the prequeuosine riboswitch linked to the 3' end of a 48-nt hairpin. Analysis of chemical shifts, NOE connectivity, (13)C spin relaxation, and residual dipolar coupling data suggests that the first two residues (A25 and U26) in the ssRNA tail stack onto the adjacent helix and assume an ordered conformation. The following U26-A27 step marks the beginning of an A6-tract and forms an acute pivot point for substantial motions within the tail, which increase toward the terminal end. Despite substantial internal motions, the ssRNA tail adopts, on average, an A-form helical conformation that is coaxial with the helix. Our results reveal a surprising degree of structural and dynamic complexity at the ssRNA-helix junction, which involves a fine balance between order and disorder that may facilitate efficient pseudoknot formation on ligand recognition.
Collapse
Affiliation(s)
- Catherine D. Eichhorn
- Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Hashim M. Al-Hashimi
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
- Corresponding authorE-mail
| |
Collapse
|
18
|
Mustoe AM, Al-Hashimi HM, Brooks CL. Coarse grained models reveal essential contributions of topological constraints to the conformational free energy of RNA bulges. J Phys Chem B 2014; 118:2615-27. [PMID: 24547945 PMCID: PMC3983386 DOI: 10.1021/jp411478x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
![]()
Recent studies have shown that simple
stereochemical constraints
encoded at the RNA secondary structure level significantly restrict
the orientation of RNA helices across two-way junctions and yield
physically reasonable distributions of RNA 3D conformations. Here
we develop a new coarse-grain model, TOPRNA, that is optimized for
exploring detailed aspects of these topological constraints in complex
RNA systems. Unlike prior models, TOPRNA effectively treats RNAs as
collections of semirigid helices linked by freely rotatable single
strands, allowing us to isolate the effects of secondary structure
connectivity and sterics on 3D structure. Simulations of bulge junctions
show that TOPRNA captures new aspects of topological constraints,
including variations arising from deviations in local A-form structure,
translational displacements of the helices, and stereochemical constraints
imposed by bulge-linker nucleotides. Notably, these aspects of topological
constraints define free energy landscapes that coincide with the distribution
of bulge conformations in the PDB. Our simulations also quantitatively
reproduce NMR RDC measurements made on HIV-1 TAR at low salt concentrations,
although not for different TAR mutants or at high salt concentrations.
Our results confirm that topological constraints are an important
determinant of bulge conformation and dynamics and demonstrate the
utility of TOPRNA for studying the topological constraints of complex
RNAs.
Collapse
Affiliation(s)
- Anthony M Mustoe
- Departments of Biophysics and ‡Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | | | | |
Collapse
|
19
|
Abstract
Conformational changes in nucleic acids play a key role in the way genetic information is stored, transferred, and processed in living cells. Here, we describe new approaches that employ a broad range of experimental data, including NMR-derived chemical shifts and residual dipolar couplings, small-angle X-ray scattering, and computational approaches such as molecular dynamics simulations to determine ensembles of DNA and RNA at atomic resolution. We review the complementary information that can be obtained from diverse sets of data and the various methods that have been developed to combine these data with computational methods to construct ensembles and assess their uncertainty. We conclude by surveying RNA and DNA ensembles determined using these methods, highlighting the unique physical and functional insights obtained so far.
Collapse
Affiliation(s)
- Loïc Salmon
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109;
| | | | | |
Collapse
|
20
|
Kim NK, Zhang Q, Feigon J. Structure and sequence elements of the CR4/5 domain of medaka telomerase RNA important for telomerase function. Nucleic Acids Res 2013; 42:3395-408. [PMID: 24335084 PMCID: PMC3950677 DOI: 10.1093/nar/gkt1276] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Telomerase is a unique reverse transcriptase that maintains the 3' ends of eukaryotic chromosomes by adding tandem telomeric repeats. The RNA subunit (TR) of vertebrate telomerase provides a template for reverse transcription, contained within the conserved template/pseudoknot domain, and a conserved regions 4 and 5 (CR4/5) domain, all essential for catalytic activity. We report the nuclear magnetic resonance (NMR) solution structure of the full-length CR4/5 domain from the teleost fish medaka (Oryzias latipes). Three helices emanate from a structured internal loop, forming a Y-shaped structure, where helix P6 stacks on P5 and helix P6.1 points away from P6. The relative orientations of the three helices are Mg2+ dependent and dynamic. Although the three-way junction is structured and has unexpected base pairs, telomerase activity assays with nucleotide substitutions and deletions in CR4/5 indicate that none of these are essential for activity. The results suggest that the junction is likely to change conformation in complex with telomerase reverse transcriptase and that it provides a flexible scaffold that allows P6 and P6.1 to correctly fold and interact with telomerase reverse transcriptase.
Collapse
Affiliation(s)
- Nak-Kyoon Kim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA, Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, 136-791, Republic of Korea and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
21
|
Shen K, Wang Y, Hwang Fu YH, Zhang Q, Feigon J, Shan SO. Molecular mechanism of GTPase activation at the signal recognition particle (SRP) RNA distal end. J Biol Chem 2013; 288:36385-97. [PMID: 24151069 DOI: 10.1074/jbc.m113.513614] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The signal recognition particle (SRP) RNA is a universally conserved and essential component of the SRP that mediates the co-translational targeting of proteins to the correct cellular membrane. During the targeting reaction, two functional ends in the SRP RNA mediate distinct functions. Whereas the RNA tetraloop facilitates initial assembly of two GTPases between the SRP and SRP receptor, this GTPase complex subsequently relocalizes ∼100 Å to the 5',3'-distal end of the RNA, a conformation crucial for GTPase activation and cargo handover. Here we combined biochemical, single molecule, and NMR studies to investigate the molecular mechanism of this large scale conformational change. We show that two independent sites contribute to the interaction of the GTPase complex with the SRP RNA distal end. Loop E plays a crucial role in the precise positioning of the GTPase complex on these two sites by inducing a defined bend in the RNA helix and thus generating a preorganized recognition surface. GTPase docking can be uncoupled from its subsequent activation, which is mediated by conserved bases in the next internal loop. These results, combined with recent structural work, elucidate how the SRP RNA induces GTPase relocalization and activation at the end of the protein targeting reaction.
Collapse
Affiliation(s)
- Kuang Shen
- From the Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 and
| | | | | | | | | | | |
Collapse
|
22
|
van der Werf RM, Tessari M, Wijmenga SS. Nucleic acid helix structure determination from NMR proton chemical shifts. JOURNAL OF BIOMOLECULAR NMR 2013; 56:95-112. [PMID: 23564038 DOI: 10.1007/s10858-013-9725-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/27/2013] [Indexed: 05/12/2023]
Abstract
We present a method for de novo derivation of the three-dimensional helix structure of nucleic acids using non-exchangeable proton chemical shifts as sole source of experimental restraints. The method is called chemical shift de novo structure derivation protocol employing singular value decomposition (CHEOPS) and uses iterative singular value decomposition to optimize the structure in helix parameter space. The correct performance of CHEOPS and its range of application are established via an extensive set of structure derivations using either simulated or experimental chemical shifts as input. The simulated input data are used to assess in a defined manner the effect of errors or limitations in the input data on the derived structures. We find that the RNA helix parameters can be determined with high accuracy. We finally demonstrate via three deposited RNA structures that experimental proton chemical shifts suffice to derive RNA helix structures with high precision and accuracy. CHEOPS provides, subject to further development, new directions for high-resolution NMR structure determination of nucleic acids.
Collapse
Affiliation(s)
- Ramon M van der Werf
- Department of Biophysical Chemistry, Institute of Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | | | | |
Collapse
|
23
|
Basu A, Jaisankar P, Suresh Kumar G. Binding of the 9-O-N-aryl/arylalkyl amino carbonyl methyl substituted berberine analogs to tRNA(phe.). PLoS One 2013; 8:e58279. [PMID: 23526972 PMCID: PMC3602459 DOI: 10.1371/journal.pone.0058279] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 02/01/2013] [Indexed: 12/19/2022] Open
Abstract
Background Three new analogs of berberine with aryl/arylalkyl amino carbonyl methyl substituent at the 9-position of the isoquinoline chromophore along with berberrubine were studied for their binding to tRNAphe by wide variety of biophysical techniques like spectrophotometry, spectrofluorimetry, circular dichroism, thermal melting, viscosity and isothermal titration calorimetry. Methodology/Principal Findings Scatchard binding isotherms revealed that the cooperative binding mode of berberine was propagated in the analogs also. Thermal melting studies showed that all the 9-O-N-aryl/arylalkyl amino carbonyl methyl substituted berberine analogs stabilized the tRNAphe more in comparison to berberine. Circular dichroism studies showed that these analogs perturbed the structure of tRNAphe more in comparison to berberine. Ferrocyanide quenching studies and viscosity results proved the intercalative binding mode of these analogs into the helical organization of tRNAphe. The binding was entropy driven for the analogs in sharp contrast to the enthalpy driven binding of berberine. The introduction of the aryl/arylalkyl amino carbonyl methyl substituent at the 9-position thus switched the enthalpy driven binding of berberine to entropy dominated binding. Salt and temperature dependent calorimetric studies established the involvement of multiple weak noncovalent interactions in the binding process. Conclusions/Significance The results showed that 9-O-N-aryl/arylalkyl amino carbonyl methyl substituted berberine analogs exhibited almost ten folds higher binding affinity to tRNAphe compared to berberine whereas the binding of berberrubine was dramatically reduced by about twenty fold in comparison to berberine. The spacer length of the substitution at the 9-position of the isoquinoline chromophore appears to be critical in modulating the binding affinities towards tRNAphe.
Collapse
Affiliation(s)
- Anirban Basu
- Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Biophysical Chemistry Laboratory, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | - Gopinatha Suresh Kumar
- Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Biophysical Chemistry Laboratory, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- * E-mail:
| |
Collapse
|
24
|
Bothe JR, Nikolova EN, Eichhorn CD, Chugh J, Hansen AL, Al-Hashimi HM. Characterizing RNA dynamics at atomic resolution using solution-state NMR spectroscopy. Nat Methods 2011; 8:919-31. [PMID: 22036746 PMCID: PMC3320163 DOI: 10.1038/nmeth.1735] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many recently discovered noncoding RNAs do not fold into a single native conformation but sample many different conformations along their free-energy landscape to carry out their biological function. Here we review solution-state NMR techniques that measure the structural, kinetic and thermodynamic characteristics of RNA motions spanning picosecond to second timescales at atomic resolution, allowing unprecedented insights into the RNA dynamic structure landscape. From these studies a basic description of the RNA dynamic structure landscape is emerging, bringing new insights into how RNA structures change to carry out their function as well as applications in RNA-targeted drug discovery and RNA bioengineering.
Collapse
Affiliation(s)
- Jameson R. Bothe
- Department of Chemistry, The University of Michigan, Ann Arbor, Michigan, USA
| | - Evgenia N. Nikolova
- Chemical Biology Doctoral Program, The University of Michigan, Ann Arbor, Michigan, USA
| | - Catherine D. Eichhorn
- Chemical Biology Doctoral Program, The University of Michigan, Ann Arbor, Michigan, USA
| | - Jeetender Chugh
- Department of Biophysics, The University of Michigan, Ann Arbor, Michigan, USA
| | - Alexandar L. Hansen
- Department of Chemistry, The University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, The University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario, Canada
| | - Hashim M. Al-Hashimi
- Department of Chemistry, The University of Michigan, Ann Arbor, Michigan, USA
- Department of Biophysics, The University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
25
|
Eichhorn CD, Feng J, Suddala KC, Walter NG, Brooks CL, Al-Hashimi HM. Unraveling the structural complexity in a single-stranded RNA tail: implications for efficient ligand binding in the prequeuosine riboswitch. Nucleic Acids Res 2011; 40:1345-55. [PMID: 22009676 PMCID: PMC3273816 DOI: 10.1093/nar/gkr833] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Single-stranded RNAs (ssRNAs) are ubiquitous RNA elements that serve diverse functional roles. Much of our understanding of ssRNA conformational behavior is limited to structures in which ssRNA directly engages in tertiary interactions or is recognized by proteins. Little is known about the structural and dynamic behavior of free ssRNAs at atomic resolution. Here, we report the collaborative application of nuclear magnetic resonance (NMR) and replica exchange molecular dynamics (REMD) simulations to characterize the 12 nt ssRNA tail derived from the prequeuosine riboswitch. NMR carbon spin relaxation data and residual dipolar coupling measurements reveal a flexible yet stacked core adopting an A-form-like conformation, with the level of order decreasing toward the terminal ends. An A-to-C mutation within the polyadenine tract alters the observed dynamics consistent with the introduction of a dynamic kink. Pre-ordering of the tail may increase the efficacy of ligand binding above that achieved by a random-coil ssRNA. The REMD simulations recapitulate important trends in the NMR data, but suggest more internal motions than inferred from the NMR analysis. Our study unmasks a previously unappreciated level of complexity in ssRNA, which we believe will also serve as an excellent model system for testing and developing computational force fields.
Collapse
Affiliation(s)
- Catherine D Eichhorn
- Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
More than 50% of RNA secondary structure is estimated to be A-form helices, which are linked together by various junctions. Here we describe a protocol for computing three interhelical Euler angles describing the relative orientation of helices across RNA junctions. 5' and 3' helices, H1 and H2, respectively, are assigned based on the junction topology. A reference canonical helix is constructed using an appropriate molecular builder software consisting of two continuous idealized A-form helices (iH1 and iH2) with helix axis oriented along the molecular Z-direction running toward the positive direction from iH1 to iH2. The phosphate groups and the carbon and oxygen atoms of the sugars are used to superimpose helix H1 of a target interhelical junction onto the corresponding iH1 of the reference helix. A copy of iH2 is then superimposed onto the resulting H2 helix to generate iH2'. A rotation matrix R is computed, which rotates iH2' into iH2 and expresses the rotation parameters in terms of three Euler angles α(h), β(h) and γ(h). The angles are processed to resolve a twofold degeneracy and to select an overall rotation around the axis of the reference helix. The three interhelical Euler angles define clockwise rotations around the 5' (-γ(h)) and 3' (α(h)) helices and an interhelical bend angle (β(h)). The angles can be depicted graphically to provide a 'Ramachandran'-type view of RNA global structure that can be used to identify unusual conformations as well as to understand variations due to changes in sequence, junction topology and other parameters.
Collapse
|
27
|
Das A, Bhadra K, Suresh Kumar G. Targeting RNA by small molecules: comparative structural and thermodynamic aspects of aristololactam-β-D-glucoside and daunomycin binding to tRNA(phe). PLoS One 2011; 6:e23186. [PMID: 21858023 PMCID: PMC3156712 DOI: 10.1371/journal.pone.0023186] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 07/11/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Interaction of aristololactam-β-D-glucoside and daunomycin with tRNA(phe) was investigated using various biophysical techniques. METHODOLOGY/PRINCIPAL FINDINGS Absorption and fluorescence studies revealed that both the compounds bind tRNA(phe) non-cooperatively. The binding of daunomycin was about one order of magnitude higher than that of aristololactam-β-D-glucoside. Stronger binding of the former was also inferred from fluorescence quenching data, quantum efficiency values and circular dichroic results. Results from isothermal titration calorimetry experiments suggested that the binding of both compounds was predominantly entropy driven with a smaller but favorable enthalpy term that increased with temperature. A large favorable electrostatic contribution to the binding of daunomycin to tRNA(phe) was revealed from salt dependence data and the dissection of the free energy values. The electrostatic component to the free energy change for aristololactam-β-D-glucoside-tRNA(phe) interaction was smaller than that of daunomycin. This was also inferred from the slope of log K versus [Na(+)] plots. Both compounds enhanced the thermal stability of tRNA(phe). The small heat capacity changes of -47 and -99 cal/mol K, respectively, observed for aristololactam-β-D-glucoside and daunomycin, and the observed enthalpy-entropy compensation phenomenon confirmed the involvement of multiple weak noncovalent interactions. Molecular aspects of the interaction have been revealed. CONCLUSIONS/SIGNIFICANCE This study presents the structural and energetic aspects of the binding of aristololactam-β-D-glucoside and daunomycin to tRNA(phe).
Collapse
MESH Headings
- Algorithms
- Antibiotics, Antineoplastic/chemistry
- Antibiotics, Antineoplastic/metabolism
- Antibiotics, Antineoplastic/pharmacology
- Aristolochic Acids/chemistry
- Aristolochic Acids/metabolism
- Aristolochic Acids/pharmacology
- Binding Sites
- Binding, Competitive
- Calorimetry
- Circular Dichroism
- Daunorubicin/chemistry
- Daunorubicin/metabolism
- Daunorubicin/pharmacology
- Entropy
- Glucosides/chemistry
- Glucosides/metabolism
- Glucosides/pharmacology
- Kinetics
- Molecular Structure
- Nucleic Acid Conformation/drug effects
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/genetics
- RNA, Transfer, Phe/metabolism
- Spectrometry, Fluorescence
- Thermodynamics
Collapse
Affiliation(s)
- Abhi Das
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, West Bengal, India
| | - Kakali Bhadra
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, West Bengal, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, West Bengal, India
| |
Collapse
|
28
|
Topological constraints: using RNA secondary structure to model 3D conformation, folding pathways, and dynamic adaptation. Curr Opin Struct Biol 2011; 21:296-305. [PMID: 21497083 DOI: 10.1016/j.sbi.2011.03.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/10/2011] [Accepted: 03/22/2011] [Indexed: 12/14/2022]
Abstract
Accompanying recent advances in determining RNA secondary structure is the growing appreciation for the importance of relatively simple topological constraints, encoded at the secondary structure level, in defining the overall architecture, folding pathways, and dynamic adaptability of RNA. A new view is emerging in which tertiary interactions do not define RNA 3D structure, but rather, help select specific conformers from an already narrow, topologically pre-defined conformational distribution. Studies are providing fundamental insights into the nature of these topological constraints, how they are encoded by the RNA secondary structure, and how they interplay with other interactions, breathing new meaning to RNA secondary structure. New approaches have been developed that take advantage of topological constraints in determining RNA backbone conformation based on secondary structure, and a limited set of other, easily accessible constraints. Topological constraints are also providing a much-needed framework for rationalizing and describing RNA dynamics and structural adaptation. Finally, studies suggest that topological constraints may play important roles in steering RNA folding pathways. Here, we review recent advances in our understanding of topological constraints encoded by the RNA secondary structure.
Collapse
|
29
|
Wostenberg C, Noid WG, Showalter SA. MD simulations of the dsRBP DGCR8 reveal correlated motions that may aid pri-miRNA binding. Biophys J 2010; 99:248-56. [PMID: 20655853 DOI: 10.1016/j.bpj.2010.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 03/12/2010] [Accepted: 04/01/2010] [Indexed: 12/13/2022] Open
Abstract
Over the past decade, microRNAs (miRNAs) have been shown to affect gene regulation by basepairing with messenger RNA, and their misregulation has been directly linked with cancer. DGCR8, a protein that contains two dsRNA-binding domains (dsRBDs) in tandem, is vital for nuclear maturation of primary miRNAs (pri-miRNAs) in connection with the RNase III enzyme Drosha. The crystal structure of the DGCR8 Core (493-720) shows a unique, well-ordered structure of the linker region between the two dsRBDs that differs from the flexible linker connecting the two dsRBDs in the antiviral response protein, PKR. To better understand the interfacial interactions between the two dsRBDs, we ran extensive MD simulations of isolated dsRBDs (505-583 and 614-691) and the Core. The simulations reveal correlated reorientations of the two domains relative to one another, with the well-ordered linker and C-terminus serving as a pivot. The results demonstrate that motions at the domain interface dynamically impact the conformation of the RNA-binding surface and may provide an adaptive separation distance that is necessary to allow interactions with a variety of different pri-miRNAs with heterogeneous structures. These results thus provide an entry point for further in vitro studies of the potentially unique RNA-binding mode of DGCR8.
Collapse
Affiliation(s)
- Christopher Wostenberg
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA
| | | | | |
Collapse
|
30
|
Bailor MH, Sun X, Al-Hashimi HM. Topology links RNA secondary structure with global conformation, dynamics, and adaptation. Science 2010; 327:202-6. [PMID: 20056889 DOI: 10.1126/science.1181085] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thermodynamic rules that link RNA sequences to secondary structure are well established, but the link between secondary structure and three-dimensional global conformation remains poorly understood. We constructed comprehensive three-dimensional maps depicting the orientation of A-form helices across RNA junctions in the Protein Data Bank and rationalized our findings with modeling and nuclear magnetic resonance spectroscopy. We show that the secondary structures of junctions encode readily computable topological constraints that accurately predict the three-dimensional orientation of helices across all two-way junctions. Our results suggest that RNA global conformation is largely defined by topological constraints encoded at the secondary structural level and that tertiary contacts and intermolecular interactions serve to stabilize specific conformers within the topologically allowed ensemble.
Collapse
Affiliation(s)
- Maximillian H Bailor
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
31
|
Musselman C, Zhang Q, Al-Hashimi H, Andricioaei I. Referencing strategy for the direct comparison of nuclear magnetic resonance and molecular dynamics motional parameters in RNA. J Phys Chem B 2010; 114:929-39. [PMID: 20039757 PMCID: PMC4287414 DOI: 10.1021/jp905286h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations are both techniques that can be used to characterize the structural dynamics of biomolecules and their underlying time scales. Comparison of relaxation parameters obtained through each methodology allows for cross validation of techniques and for complementarity in the analysis of dynamics. Here we present a combined NMR/MD study of the dynamics of HIV-1 transactivation response (TAR) RNA. We compute relaxation constants (R(1), R(2), and NOE) and model-free parameters (S(2) and tau) from a 65 ns molecular dynamics (MD) trajectory and compare them with the respective parameters measured in a domain-elongation NMR experiment. Using the elongated domain as the frame of reference for all computed parameters allows for a direct comparison between experiment and simulation. We see good agreement for many parameters and gain further insight into the nature of the local and global dynamics of TAR, which are found to be quite complex, spanning multiple time scales. For the few cases where agreement is poor, comparison of the dynamical parameters provides insight into the limits of each technique. We suggest a frequency-matching procedure that yields an upper bound for the time scale of dynamics to which the NMR relaxation experiment is sensitive.
Collapse
Affiliation(s)
- Catherine Musselman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
32
|
Dethoff EA, Hansen AL, Zhang Q, Al-Hashimi HM. Variable helix elongation as a tool to modulate RNA alignment and motional couplings. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 202:117-21. [PMID: 19854083 PMCID: PMC3319148 DOI: 10.1016/j.jmr.2009.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/23/2009] [Accepted: 09/26/2009] [Indexed: 05/13/2023]
Abstract
The application of residual dipolar couplings (RDCs) in studies of RNA structure and dynamics can be complicated by the presence of couplings between collective helix motions and overall alignment and by the inability to modulate overall alignment of the molecule by changing the ordering medium. Here, we show for a 27-nt TAR RNA construct that variable levels of helix elongation can be used to alter both overall alignment and couplings to collective helix motions in a semi-predictable manner. In the absence of elongation, a four base-pair helix II capped by a UUCG apical loop exhibits a higher degree of order compared to a six base-pair helix I (theta(I)/theta(II)=0.56+/-0.1). The principal S(zz) direction is nearly parallel to the axis of helix II but deviates by approximately 40 degrees relative to the axis of helix I. Elongating helix I by three base-pairs equalizes the alignment of the two helices and pushes the RNA into the motional coupling limit such that the two helices have comparable degrees of order (theta(I)/theta(II)=0.92+/-0.04) and orientations relative to S(zz) ( approximately 17 degrees ). Increasing the length of elongation further to 22 base-pairs pushes the RNA into the motional decoupling limit in which helix I dominates alignment (theta(II)/theta(I)=0.45+/-0.05), with S(zz) orientated nearly parallel to its helix axis. Many of these trends can be rationalized using PALES simulations that employ a previously proposed three-state dynamic ensemble of TAR. Our results provide new insights into motional couplings, offer guidelines for assessing their extent, and suggest that variable degrees of helix elongation can allow access to independent sets of RDCs for characterizing RNA structural dynamics.
Collapse
Affiliation(s)
- Elizabeth A. Dethoff
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexandar L. Hansen
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
- Departments of Molecular Genetics, Biochemistry, and Chemistry, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - Qi Zhang
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Hashim M. Al-Hashimi
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
- To whom correspondence should be addressed. H. M. A.: ; telephone (734) 615 3361; fax (734) 647 4865
| |
Collapse
|
33
|
Zhang Q, Al-Hashimi HM. Domain-elongation NMR spectroscopy yields new insights into RNA dynamics and adaptive recognition. RNA (NEW YORK, N.Y.) 2009; 15:1941-8. [PMID: 19776156 PMCID: PMC2764479 DOI: 10.1261/rna.1806909] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
By simplifying the interpretation of nuclear magnetic resonance spin relaxation and residual dipolar couplings data, recent developments involving the elongation of RNA helices are providing new atomic insights into the dynamical properties that allow RNA structures to change functionally and adaptively. Domain elongation, in concert with spin relaxation measurements, has allowed the detailed characterization of a hierarchical network of local and collective motional modes occurring at nanosecond timescale that mirror the structural rearrangements that take place following adaptive recognition. The combination of domain elongation with residual dipolar coupling measurements has allowed the experimental three-dimensional visualization of very large amplitude rigid-body helix motions in HIV-1 transactivation response element (TAR) that trace out a highly choreographed trajectory in which the helices twist and bend in a correlated manner. The dynamic trajectory allows unbound TAR to sample many of its ligand bound conformations, indicating that adaptive recognition occurs by "conformational selection" rather than "induced fit." These studies suggest that intrinsic flexibility plays essential roles directing RNA conformational changes along specific pathways.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California, 90095, USA
| | | |
Collapse
|
34
|
Stelzer AC, Frank AT, Bailor MH, Andricioaei I, Al-Hashimi HM. Constructing atomic-resolution RNA structural ensembles using MD and motionally decoupled NMR RDCs. Methods 2009; 49:167-73. [PMID: 19699798 DOI: 10.1016/j.ymeth.2009.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 08/15/2009] [Accepted: 08/18/2009] [Indexed: 12/30/2022] Open
Abstract
A broad structural landscape often needs to be characterized in order to fully understand how regulatory RNAs perform their biological functions at the atomic level. We present a protocol for visualizing thermally accessible RNA conformations at atomic-resolution and with timescales extending up to milliseconds. The protocol combines molecular dynamics (MD) simulations with experimental residual dipolar couplings (RDCs) measured in partially aligned (13)C/(15)N isotopically enriched elongated RNA samples. The structural ensembles generated in this manner provide insights into RNA dynamics and its role in functionally important transitions.
Collapse
Affiliation(s)
- Andrew C Stelzer
- Department of Chemistry and Biophysics, The University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
35
|
Fisher CK, Al-Hashimi HM. Approximate reconstruction of continuous spatially complex domain motions by multialignment NMR residual dipolar couplings. J Phys Chem B 2009; 113:6173-6. [PMID: 19358547 DOI: 10.1021/jp900411z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
NMR spectroscopy is one of the most powerful techniques for studying the internal dynamics of biomolecules. Current formalisms approximate the dynamics using simple continuous motional models or models involving discrete jumps between a small number of states. However, no approach currently exists for interpreting NMR data in terms of continuous spatially complex motional paths that may feature more than one distinct maneuver. Here, we present an approach for approximately reconstructing spatially complex continuous motions of chiral domains using NMR anisotropic interactions. The key is to express Wigner matrix elements, which can be determined experimentally using residual dipolar couplings, as a line integral over a curve in configuration space containing an ensemble of conformations and to approximate the curve using a series of geodesic segments. Using this approach and five sets of synthetic residual dipolar couplings computed for five linearly independent alignment conditions, we show that it is theoretically possible to reconstruct salient features of a multisegment interhelical motional trajectory obtained from a 65 ns molecular dynamics simulation of a stem-loop RNA. Our study shows that the 3-D atomic reconstruction of complex motions in biomolecules is within experimental reach.
Collapse
|
36
|
Fisher CK, Zhang Q, Stelzer A, Al-Hashimi HM. Ultrahigh resolution characterization of domain motions and correlations by multialignment and multireference residual dipolar coupling NMR. J Phys Chem B 2009; 112:16815-22. [PMID: 19367865 DOI: 10.1021/jp806188j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nuclear magnetic resonance (NMR) residual dipolar couplings (RDCs) provide a unique opportunity for spatially characterizing complex motions in biomolecules with time scale sensitivity extending up to milliseconds. Up to five motionally averaged Wigner rotation elements, (D(0k)2(alphaalpha)), can be determined experimentally using RDCs measured in five linearly independent alignment conditions and applied to define motions of axially symmetric bond vectors. Here, we show that up to 25 motionally averaged Wigner rotation elements, (D(mk)2(alphabetagamma)), can be determined experimentally from multialignment RDCs and used to characterize rigid-body motions of chiral domains. The 25 (D(mk)2(alphabetagamma)) elements form a basis set that allows one to measure motions of a domain relative to an isotropic distribution of reference frames anchored on a second domain (and vice versa), thus expanding the 3D spatial resolution with which motions can be characterized. The 25 (D(mk)2(alphabetagamma)) elements can also be used to fit an ensemble consisting of up to eight equally or six unequally populated states. For more than two domains, changing the identity of the domain governing alignment allows access to new information regarding the correlated nature of the domain fluctuations. Example simulations are provided that validate the theoretical derivation and illustrate the high spatial resolution with which rigid-body domain motions can be characterized using multialignment and multireference RDCs. Our results further motivate the development of experimental approaches for both modulating alignment and anchoring it on specifically targeted domains.
Collapse
Affiliation(s)
- Charles K Fisher
- Department of Chemistry & Biophysics, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | |
Collapse
|
37
|
Frank AT, Stelzer AC, Al-Hashimi HM, Andricioaei I. Constructing RNA dynamical ensembles by combining MD and motionally decoupled NMR RDCs: new insights into RNA dynamics and adaptive ligand recognition. Nucleic Acids Res 2009; 37:3670-9. [PMID: 19369218 PMCID: PMC2699496 DOI: 10.1093/nar/gkp156] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We describe a strategy for constructing atomic resolution dynamical ensembles of RNA molecules, spanning up to millisecond timescales, that combines molecular dynamics (MD) simulations with NMR residual dipolar couplings (RDC) measured in elongated RNA. The ensembles are generated via a Monte Carlo procedure by selecting snap-shot from an MD trajectory that reproduce experimentally measured RDCs. Using this approach, we construct ensembles for two variants of the transactivation response element (TAR) containing three (HIV-1) and two (HIV-2) nucleotide bulges. The HIV-1 TAR ensemble reveals significant mobility in bulge residues C24 and U25 and to a lesser extent U23 and neighboring helical residue A22 that give rise to large amplitude spatially correlated twisting and bending helical motions. Omission of bulge residue C24 in HIV-2 TAR leads to a significant reduction in both the local mobility in and around the bulge and amplitude of inter-helical bending motions. In contrast, twisting motions of the helices remain comparable in amplitude to HIV-1 TAR and spatial correlations between them increase significantly. Comparison of the HIV-1 TAR dynamical ensemble and ligand bound TAR conformations reveals that several features of the binding pocket and global conformation are dynamically preformed, providing support for adaptive recognition via a ‘conformational selection’ type mechanism.
Collapse
Affiliation(s)
- Aaron T Frank
- Department of Chemistry, University of California Irvine, 1102 Natural Sciences 2, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
38
|
Islam MM, Chowdhury SR, Kumar GS. Spectroscopic and calorimetric studies on the binding of alkaloids berberine, palmatine and coralyne to double stranded RNA polynucleotides. J Phys Chem B 2009; 113:1210-24. [PMID: 19132839 DOI: 10.1021/jp806597w] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The interaction of two natural protoberberine plant alkaloids berberine and palmatine and a synthetic derivative coralyne to three double stranded ribonucleic acids, poly(A). poly(U), poly(I).poly(C) and poly(C).poly(G) was studied using various biophysical techniques. Absorbance and fluorescence studies showed that the alkaloids bound cooperatively to these RNAs with the binding affinities of the order 10(4) M(-1). Circular dichroic results suggested that the conformation of poly(A). poly(U) was perturbed by all the three alkaloids, that of poly(I).poly(C) by coralyne only and that of poly(C).poly(G) by none. Fluorescence quenching studies gave evidence for partial intercalation of berberine and palmatine and complete intercalation of coralyne to these RNA duplexes. Isothermal titration calorimetric studies revealed that the binding was characterized by negative enthalpy and positive entropy changes and the affinity constants derived were in agreement with the overall binding affinity from spectral data. The binding of all the three alkaloids considerably stabilized the melting of poly(A). poly(U) and poly(I).poly(C) and the binding data evaluated from the melting data were in agreement with that obtained from other techniques. The overall binding affinity of the alkaloids to these double stranded RNAs varied in the order, berberine = palmatine < coralyne. The temperature dependence of the enthalpy changes afforded large negative values of heat capacity changes for the binding of palmatine and coralyne to poly(A).poly(U) and of coralyne to poly(I).poly(C), suggesting substantial hydrophobic contribution in the binding process. Further, enthalpy-entropy compensation was also seen in almost all the systems that showed binding. These results further advance our understanding on the binding of small molecules that are specific binders to double stranded RNA sequences.
Collapse
Affiliation(s)
- Md Maidul Islam
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata 700 032, India
| | | | | |
Collapse
|
39
|
Islam MM, Pandya P, Kumar S, Kumar GS. RNA targeting through binding of small molecules: Studies on t-RNA binding by the cytotoxic protoberberine alkaloidcoralyne. ACTA ACUST UNITED AC 2009; 5:244-54. [DOI: 10.1039/b816480k] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Characterizing complex dynamics in the transactivation response element apical loop and motional correlations with the bulge by NMR, molecular dynamics, and mutagenesis. Biophys J 2008; 95:3906-15. [PMID: 18621815 DOI: 10.1529/biophysj.108.140285] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The HIV-1 transactivation response element (TAR) RNA binds a variety of proteins and is a target for developing anti-HIV therapies. TAR has two primary binding sites: a UCU bulge and a CUGGGA apical loop. We used NMR residual dipolar couplings, carbon spin relaxation (R(1) and R(2)), and relaxation dispersion (R(1rho)) in conjunction with molecular dynamics and mutagenesis to characterize the dynamics of the TAR apical loop and investigate previously proposed long-range interactions with the distant bulge. Replacement of the wild-type apical loop with a UUCG loop did not significantly affect the structural dynamics at the bulge, indicating that the apical loop and the bulge act largely as independent dynamical recognition centers. The apical loop undergoes complex dynamics at multiple timescales that are likely important for adaptive recognition: U31 and G33 undergo limited motions, G32 is highly flexible at picosecond-nanosecond timescales, and G34 and C30 form a dynamic Watson-Crick basepair in which G34 and A35 undergo a slow (approximately 30 mus) likely concerted looping in and out motion, with A35 also undergoing large amplitude motions at picosecond-nanosecond timescales. Our study highlights the power of combining NMR, molecular dynamics, and mutagenesis in characterizing RNA dynamics.
Collapse
|
41
|
Extending the NMR spatial resolution limit for RNA by motional couplings. Nat Methods 2008; 5:243-5. [PMID: 18246076 DOI: 10.1038/nmeth.1180] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 12/19/2007] [Indexed: 12/29/2022]
Abstract
Experimental resolution of distinct dynamical processes in molecules can prove impossible when they are correlated to one another. In nuclear magnetic resonance (NMR) spectroscopy, couplings between internal and overall motions lead to intractable complexity, depriving insights into functionally important motions. Here we demonstrate that motional couplings can be used to anchor NMR frames of reference onto different parts of an RNA molecule, thus extending the spatial resolution limit for dynamical characterization.
Collapse
|
42
|
Zhang Q, Stelzer AC, Fisher CK, Al-Hashimi HM. Visualizing spatially correlated dynamics that directs RNA conformational transitions. Nature 2008; 450:1263-7. [PMID: 18097416 DOI: 10.1038/nature06389] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 10/18/2007] [Indexed: 01/27/2023]
Abstract
RNAs fold into three-dimensional (3D) structures that subsequently undergo large, functionally important, conformational transitions in response to a variety of cellular signals. RNA structures are believed to encode spatially tuned flexibility that can direct transitions along specific conformational pathways. However, this hypothesis has proved difficult to examine directly because atomic movements in complex biomolecules cannot be visualized in 3D by using current experimental methods. Here we report the successful implementation of a strategy using NMR that has allowed us to visualize, with complete 3D rotational sensitivity, the dynamics between two RNA helices that are linked by a functionally important trinucleotide bulge over timescales extending up to milliseconds. The key to our approach is to anchor NMR frames of reference onto each helix and thereby directly measure their dynamics, one relative to the other, using 'relativistic' sets of residual dipolar couplings (RDCs). Using this approach, we uncovered super-large amplitude helix motions that trace out a surprisingly structured and spatially correlated 3D dynamic trajectory. The two helices twist around their individual axes by approximately 53 degrees and 110 degrees in a highly correlated manner (R = 0.97) while simultaneously (R = 0.81-0.92) bending by about 94 degrees. Remarkably, the 3D dynamic trajectory is dotted at various positions by seven distinct ligand-bound conformations of the RNA. Thus even partly unstructured RNAs can undergo structured dynamics that directs ligand-induced transitions along specific predefined conformational pathways.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Chemistry and Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | |
Collapse
|
43
|
Hansen AL, Al-Hashimi HM. Dynamics of large elongated RNA by NMR carbon relaxation. J Am Chem Soc 2007; 129:16072-82. [PMID: 18047338 DOI: 10.1021/ja0757982] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We present an NMR strategy for characterizing picosecond-to-nanosecond internal motions in uniformly 13C/15N-labeled RNAs that combines measurements of R1, R1rho, and heteronuclear 13C{1H} NOEs for protonated base (C2, C5, C6, and C8) and sugar (C1') carbons with a domain elongation strategy for decoupling internal from overall motions and residual dipolar coupling (RDC) measurements for determining the average RNA global conformation and orientation of the principal axis of the axially symmetric rotational diffusion. TROSY-detected pulse sequences are presented for the accurate measurement of nucleobase carbon R1 and R1rho rates in large RNAs. The relaxation data is analyzed using a model free formalism which takes into account the very high anisotropy of overall rotational diffusion (Dratio approximately 4.7), asymmetry of the nucleobase CSAs and noncollinearity of C-C, C-H dipolar and CSA interactions under the assumption that all interaction tensors for a given carbon experience identical isotropic internal motions. The approach is demonstrated and validated on an elongated HIV-1 TAR RNA (taum approximately 18 ns) both in free form and bound to the ligand argininamide (ARG). Results show that, while ARG binding reduces the amplitude of collective helix motions and local mobility at the binding pocket, it leads to a drastic increase in the local mobility of "spacer" bulge residues linking the two helices which undergo virtually unrestricted internal motions (S2 approximately 0.2) in the ARG bound state. Our results establish the ability to quantitatively study the dynamics of RNAs which are significantly larger and more anisotropic than customarily studied by NMR carbon relaxation.
Collapse
Affiliation(s)
- Alexandar L Hansen
- Department of Chemistry and Biophysics, The University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
44
|
Getz M, Sun X, Casiano-Negroni A, Zhang Q, Al-Hashimi HM. NMR studies of RNA dynamics and structural plasticity using NMR residual dipolar couplings. Biopolymers 2007; 86:384-402. [PMID: 17594140 DOI: 10.1002/bip.20765] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An increasing number of RNAs are being discovered that perform their functions by undergoing large changes in conformation in response to a variety of cellular signals, including recognition of proteins and small molecular targets, changes in temperature, and RNA synthesis itself. The measurement of NMR residual dipolar couplings (RDCs) in partially aligned systems is providing new insights into the structural plasticity of RNA through combined characterization of large-amplitude collective helix motions and local flexibility in noncanonical regions over a wide window of biologically relevant timescales (<milliseconds). Here, we review RDC methodology for studying RNA structural dynamics and survey what has been learnt thus far from application of these methods. Future methodological challenges are also identified.
Collapse
Affiliation(s)
- Melissa Getz
- Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
45
|
Bailor MH, Musselman C, Hansen AL, Gulati K, Patel DJ, Al-Hashimi HM. Characterizing the relative orientation and dynamics of RNA A-form helices using NMR residual dipolar couplings. Nat Protoc 2007; 2:1536-46. [PMID: 17571061 PMCID: PMC4707013 DOI: 10.1038/nprot.2007.221] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We present a protocol for determining the relative orientation and dynamics of A-form helices in 13C/15N isotopically enriched RNA samples using NMR residual dipolar couplings (RDCs). Non-terminal Watson-Crick base pairs in helical stems are experimentally identified using NOE and trans-hydrogen bond connectivity and modeled using the idealized A-form helix geometry. RDCs measured in the partially aligned RNA are used to compute order tensors describing average alignment of each helix relative to the applied magnetic field. The order tensors are translated into Euler angles defining the average relative orientation of helices and order parameters describing the amplitude and asymmetry of interhelix motions. The protocol does not require complete resonance assignments and therefore can be implemented rapidly to RNAs much larger than those for which complete high-resolution NMR structure determination is feasible. The protocol is particularly valuable for exploring adaptive changes in RNA conformation that occur in response to biologically relevant signals. Following resonance assignments, the procedure is expected to take no more than 2 weeks of acquisition and data analysis time.
Collapse
Affiliation(s)
- Maximillian H Bailor
- Department of Chemistry & Biophysics Research Division, The University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
46
|
Casiano-Negroni A, Sun X, Al-Hashimi HM. Probing Na(+)-induced changes in the HIV-1 TAR conformational dynamics using NMR residual dipolar couplings: new insights into the role of counterions and electrostatic interactions in adaptive recognition. Biochemistry 2007; 46:6525-35. [PMID: 17488097 PMCID: PMC3319146 DOI: 10.1021/bi700335n] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many regulatory RNAs undergo large changes in structure upon recognition of proteins and ligands, but the mechanism by which this occurs remains poorly understood. Using NMR residual dipolar coupling (RDCs), we characterized Na+-induced changes in the structure and dynamics of the bulge-containing HIV-1 transactivation response element (TAR) RNA that mirrors changes induced by small molecules bearing a different number of cationic groups. Increasing the Na+ concentration from 25 to 320 mM led to a continuous reduction in the average inter-helical bend angle (from 46 degrees to 22 degrees ), inter-helical twist angle (from 66 degrees to -18 degrees ), and inter-helix flexibility (as measured by an increase in the internal generalized degree of order from 0.56 to 0.74). Similar conformational changes were observed with Mg2+, indicating that nonspecific electrostatic interactions drive the conformational transition, although results also suggest that Na+ and Mg2+ may associate with TAR in distinct modes. The transition can be rationalized on the basis of a population-weighted average of two ensembles comprising an electrostatically relaxed bent and flexible TAR conformation that is weakly associated with counterions and a globally rigid coaxial conformation that has stronger electrostatic potential and association with counterions. The TAR inter-helical orientations that are stabilized by small molecules fall around the metal-induced conformational pathway, indicating that counterions may help predispose the TAR conformation for target recognition. Our results underscore the intricate sensitivity of RNA conformational dynamics to environmental conditions and demonstrate the ability to detect subtle conformational changes using NMR RDCs.
Collapse
Affiliation(s)
| | | | - Hashim M. Al-Hashimi
- To whom correspondence should be addressed. H. M. A.: ; telephone (734) 615 3361; fax (734) 647 4865
| |
Collapse
|
47
|
Musselman C, Al-Hashimi HM, Andricioaei I. iRED analysis of TAR RNA reveals motional coupling, long-range correlations, and a dynamical hinge. Biophys J 2007; 93:411-22. [PMID: 17449677 PMCID: PMC1896250 DOI: 10.1529/biophysj.107.104620] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The HIV-1 transactivation response RNA element (TAR), which is essential to the lifecycle of the virus, has been suggested, based on NMR and hydrodynamic measurements, to undergo substantial, collective, structural dynamics that are important for its function. To deal with the significant coupling between overall diffusional rotation and internal motion expected to exist in TAR, here we utilize an isotropic reorientational eigenmode dynamics analysis of simulated molecular trajectories to obtain a detailed description of TAR dynamics and an accurately quantified pattern of dynamical correlations. The analysis demonstrates the inseparability of internal and overall motional modes, confirms the existence and reveals the nature of collective domain dynamics, and additionally reveals that the hinge for these motions is centered on residues U23, C24, and C41. Results also indicate the existence of long-range communication between the loop and the core of the RNA, and between the loop and the bulge. Additionally, the isotropic reorientational eigenmode dynamics analysis explains, from a dynamical perspective, several existing biochemical mutational studies and suggests new mutations for future structural dynamics studies.
Collapse
Affiliation(s)
- Catherine Musselman
- Department of Chemistry and The Center for Computational Medicine and Biology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
48
|
Sun X, Zhang Q, Al-Hashimi HM. Resolving fast and slow motions in the internal loop containing stem-loop 1 of HIV-1 that are modulated by Mg2+ binding: role in the kissing-duplex structural transition. Nucleic Acids Res 2007; 35:1698-713. [PMID: 17311812 PMCID: PMC1865058 DOI: 10.1093/nar/gkm020] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Stem loop 1 (SL1) is a highly conserved hairpin in the 5'-leader of the human immunodeficiency virus type I that forms a metastable kissing dimer that is converted during viral maturation into a stable duplex with the aid of the nucleocapsid (NC) protein. SL1 contains a highly conserved internal loop that promotes the kissing-duplex transition by a mechanism that remains poorly understood. Using NMR, we characterized internal motions induced by the internal loop in an SL1 monomer that may promote the kissing-duplex transition. This includes micro-to-millisecond secondary structural transitions that cause partial melting of three base-pairs above the internal loop making them key nucleation sites for exchanging strands and nanosecond rigid-body stem motions that can help bring strands into spatial register. We show that while Mg2+ binds to the internal loop and arrests these internal motions, it preserves and/or activates local mobility at internal loop residues G272 and G273 which are implicated in NC binding. By stabilizing SL1 without compromising the accessibility of G272 and G273 for NC binding, Mg2+ may increase the dependence of the kissing-duplex transition on NC binding thus preventing spontaneous transitions from taking place and ensuring that viral RNA and protein maturation occur in concert.
Collapse
|
49
|
Getz MM, Andrews AJ, Fierke CA, Al-Hashimi HM. Structural plasticity and Mg2+ binding properties of RNase P P4 from combined analysis of NMR residual dipolar couplings and motionally decoupled spin relaxation. RNA (NEW YORK, N.Y.) 2007; 13:251-66. [PMID: 17194721 PMCID: PMC1781369 DOI: 10.1261/rna.264207] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The P4 helix is an essential element of ribonuclease P (RNase P) that is believed to bind catalytically important metals. Here, we applied a combination of NMR residual dipolar couplings (RDCs) and a recently introduced domain-elongation strategy for measuring "motionally decoupled" relaxation data to characterize the structural dynamics of the P4 helix from Bacillus subtilis RNase P. In the absence of divalent ions, the two P4 helical domains undergo small amplitude (approximately 13 degrees) collective motions about an average interhelical angle of 10 degrees. The highly conserved U7 bulge and helical residue C8, which are proposed to be important for substrate recognition and metal binding, are locally mobile at pico- to nanosecond timescales and together form the pivot point for the collective domain motions. Chemical shift mapping reveals significant association of Mg2+ ions at the P4 major groove near the flexible pivot point at residues (A5, G22, G23) previously identified to bind catalytically important metals. The Mg2+ ions do not, however, significantly alter the structure or dynamics of P4. Analysis of results in the context of available X-ray structures of the RNA component of RNase P and structural models that include the pre-tRNA substrate suggest that the internal motions observed in P4 likely facilitate adaptive changes in conformation that take place during folding and substrate recognition, possibly aided by interactions with Mg2+ ions. Our results add to a growing view supporting the existence of functionally important internal motions in RNA occurring at nanosecond timescales.
Collapse
Affiliation(s)
- Melissa M Getz
- Department of Chemistry, University of Michigan, Ann Arbor 48109, USA
| | | | | | | |
Collapse
|