1
|
Hriňová K, Dlapová J, Kubala B, Kormanová Ľ, Levarski Z, Struhárňanská E, Turňa J, Stuchlík S. Production of Reverse Transcriptase and DNA Polymerase in Bacterial Expression Systems. Bioengineering (Basel) 2024; 11:727. [PMID: 39061809 PMCID: PMC11274053 DOI: 10.3390/bioengineering11070727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
DNA amplification and reverse transcription enzymes have proven to be invaluable in fast and reliable diagnostics and research applications because of their processivity, specificity, and robustness. Our study focused on the production of mutant Taq DNA polymerase and mutant M-MLV reverse transcriptase in the expression hosts Vibrio natriegens and Escherichia coli under various expression conditions. We also examined nonspecific extracellular production in V. natriegens. Intracellularly, M-MLV was produced in V. natriegens at the level of 11% of the total cell proteins (TCPs) compared with 16% of TCPs in E. coli. We obtained a soluble protein that accounted for 11% of the enzyme produced in V. natriegens and 22% of the enzyme produced in E. coli. Taq pol was produced intracellularly in V. natriegens at the level of 30% of TCPs compared with 26% of TCPs in E. coli. However, Taq pol was almost non-soluble in E. coli, whereas in V. natriegens, we obtained a soluble protein that accounted for 23% of the produced enzyme. We detected substantial extracellular production of Taq pol. Thus, V. natriegens is a suitable alternative host with the potential for production of recombinant proteins.
Collapse
Affiliation(s)
- Kristína Hriňová
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, 84215 Bratislava, Slovakia; (K.H.); (J.D.); (Ľ.K.); (E.S.); (J.T.); (S.S.)
| | - Johana Dlapová
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, 84215 Bratislava, Slovakia; (K.H.); (J.D.); (Ľ.K.); (E.S.); (J.T.); (S.S.)
| | - Bohuš Kubala
- Laboratory for Microbial Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 84551 Bratislava, Slovakia;
| | - Ľubica Kormanová
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, 84215 Bratislava, Slovakia; (K.H.); (J.D.); (Ľ.K.); (E.S.); (J.T.); (S.S.)
| | - Zdenko Levarski
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, 84215 Bratislava, Slovakia; (K.H.); (J.D.); (Ľ.K.); (E.S.); (J.T.); (S.S.)
- Science Park, Comenius University in Bratislava, 84104 Bratislava, Slovakia
- ReKoMBe, s.r.o., 84102 Bratislava, Slovakia
| | - Eva Struhárňanská
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, 84215 Bratislava, Slovakia; (K.H.); (J.D.); (Ľ.K.); (E.S.); (J.T.); (S.S.)
- ReKoMBe, s.r.o., 84102 Bratislava, Slovakia
| | - Ján Turňa
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, 84215 Bratislava, Slovakia; (K.H.); (J.D.); (Ľ.K.); (E.S.); (J.T.); (S.S.)
- Science Park, Comenius University in Bratislava, 84104 Bratislava, Slovakia
- ReKoMBe, s.r.o., 84102 Bratislava, Slovakia
| | - Stanislav Stuchlík
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, 84215 Bratislava, Slovakia; (K.H.); (J.D.); (Ľ.K.); (E.S.); (J.T.); (S.S.)
- Science Park, Comenius University in Bratislava, 84104 Bratislava, Slovakia
- ReKoMBe, s.r.o., 84102 Bratislava, Slovakia
| |
Collapse
|
2
|
Damough S, Sabzalinezhad M, Talebkhan Y, Nematollahi L, Bayat E, Torkashvand F, Adeli A, Jahandar H, Barkhordari F, Mahboudi F. Optimization of culture conditions for high-level expression of soluble and active tumor necrosis factor-α in E. coli. Protein Expr Purif 2020; 179:105805. [PMID: 33290843 DOI: 10.1016/j.pep.2020.105805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 12/31/2022]
Abstract
Anti-TNF inhibitors exert their therapeutic effect by inhibition of the excessive amounts of TNF-α within the body. Recombinant TNF-α should be produced in a soluble refolded form to investigate the effectiveness and efficiency of anti-TNF-α compounds. In this research, the designed cassette was subcloned in the pET28a expression vector and expressed in E. coli BL21 (DE3). The identity of the protein was confirmed through SDS-PAGE and Western blotting. After optimizing expression conditions, protein purification was performed using native Ni-NTA affinity chromatography. The biological activity of the soluble recombinant TNF-α was investigated using MTT assay. Also, the affinity of an anti-TNF-α agent, Altebrel, was investigated against the expressed protein through ELISA. Optimization of TNF-α expression conditions represented that the highest expression could be achieved at 37 °C using 0.5 mM IPTG 6 h post-induction. The recombinant protein represented an inhibitory effect on the L929 murine fibroblast cell line and was successfully detected by Altebrel in ELISA. Binding kinetics were also studied using Cimzia as an anti-TNF-α molecule and 7.2 E-13M was calculated as the equilibrium dissociation constant value (KD). The significant expression level of the recombinant protein in the soluble form, its high purity, and assessment of its biological activity showed that the expressed protein could be used in tests of ELISA and MTT to assess the activity of anti-TNF-α agents.
Collapse
Affiliation(s)
- Shadi Damough
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Yeganeh Talebkhan
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Leila Nematollahi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Bayat
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Ahmad Adeli
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hoda Jahandar
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | | |
Collapse
|
3
|
Dudley QM, Karim AS, Nash CJ, Jewett MC. In vitro prototyping of limonene biosynthesis using cell-free protein synthesis. Metab Eng 2020; 61:251-260. [PMID: 32464283 DOI: 10.1016/j.ymben.2020.05.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 01/03/2023]
Abstract
Metabolic engineering of microorganisms to produce sustainable chemicals has emerged as an important part of the global bioeconomy. Unfortunately, efforts to design and engineer microbial cell factories are challenging because design-build-test cycles, iterations of re-engineering organisms to test and optimize new sets of enzymes, are slow. To alleviate this challenge, we demonstrate a cell-free approach termed in vitro Prototyping and Rapid Optimization of Biosynthetic Enzymes (or iPROBE). In iPROBE, a large number of pathway combinations can be rapidly built and optimized. The key idea is to use cell-free protein synthesis (CFPS) to manufacture pathway enzymes in separate reactions that are then mixed to modularly assemble multiple, distinct biosynthetic pathways. As a model, we apply our approach to the 9-step heterologous enzyme pathway to limonene in extracts from Escherichia coli. In iterative cycles of design, we studied the impact of 54 enzyme homologs, multiple enzyme levels, and cofactor concentrations on pathway performance. In total, we screened over 150 unique sets of enzymes in 580 unique pathway conditions to increase limonene production in 24 h from 0.2 to 4.5 mM (23-610 mg/L). Finally, to demonstrate the modularity of this pathway, we also synthesized the biofuel precursors pinene and bisabolene. We anticipate that iPROBE will accelerate design-build-test cycles for metabolic engineering, enabling data-driven multiplexed cell-free methods for testing large combinations of biosynthetic enzymes to inform cellular design.
Collapse
Affiliation(s)
- Quentin M Dudley
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Ashty S Karim
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Connor J Nash
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
4
|
Joshi MK, Burton RA, Wu H, Lipchik AM, Craddock BP, Mo H, Parker LL, Miller WT, Post CB. Substrate binding to Src: A new perspective on tyrosine kinase substrate recognition from NMR and molecular dynamics. Protein Sci 2019; 29:350-359. [PMID: 31697410 DOI: 10.1002/pro.3777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 01/01/2023]
Abstract
Most signal transduction pathways in humans are regulated by protein kinases through phosphorylation of their protein substrates. Typical eukaryotic protein kinases are of two major types: those that phosphorylate-specific sequences containing tyrosine (~90 kinases) and those that phosphorylate either serine or threonine (~395 kinases). The highly conserved catalytic domain of protein kinases comprises a smaller N lobe and a larger C lobe separated by a cleft region lined by the activation loop. Prior studies find that protein tyrosine kinases recognize peptide substrates by binding the polypeptide chain along the C-lobe on one side of the activation loop, while serine/threonine kinases bind their substrates in the cleft and on the side of the activation loop opposite to that of the tyrosine kinases. Substrate binding structural studies have been limited to four families of the tyrosine kinase group, and did not include Src tyrosine kinases. We examined peptide-substrate binding to Src using paramagnetic-relaxation-enhancement NMR combined with molecular dynamics simulations. The results suggest Src tyrosine kinase can bind substrate positioning residues C-terminal to the phosphoacceptor residue in an orientation similar to serine/threonine kinases, and unlike other tyrosine kinases. Mutagenesis corroborates this new perspective on tyrosine kinase substrate recognition. Rather than an evolutionary split between tyrosine and serine/threonine kinases, a change in substrate recognition may have occurred within the TK group of the human kinome. Protein tyrosine kinases have long been therapeutic targets, but many marketed drugs have deleterious off-target effects. More accurate knowledge of substrate interactions of tyrosine kinases has the potential for improving drug selectivity.
Collapse
Affiliation(s)
- Mehul K Joshi
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Robert A Burton
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana.,Ancestry, Lehi, Utah
| | - Heng Wu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Andrew M Lipchik
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Barbara P Craddock
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York
| | - Huaping Mo
- Purdue Interdepartmental NMR Facility PINMRF, Purdue University, West Lafayette, Indiana
| | - Laurie L Parker
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - W Todd Miller
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York.,Department of Veterans Affairs Medical Center, Northport, New York
| | - Carol Beth Post
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| |
Collapse
|
5
|
Lu J, Zhao Y, Zhang J. High-level expression of Aerococcus viridans pyruvate oxidase in Escherichia coli by optimization of vectors and induction conditions. Lett Appl Microbiol 2018; 67:262-269. [PMID: 29856486 DOI: 10.1111/lam.13013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/15/2018] [Accepted: 05/28/2018] [Indexed: 01/24/2023]
Abstract
Pyruvate oxidase is an important enzyme used as a reagent in kits and biochemical analyses; however, the yield of pyruvate oxidase from wild microbial strains is low. In this study, high-level expression of Aerococcus viridans pyruvate oxidase was achieved in recombinant Escherichia coli by optimizing the expression system and induction conditions. Three recombinant pET vectors were constructed for pyruvate oxidase expression in E. coli. The isopropyl-β-d-thiogalactoside (IPTG) concentration and induction temperature were optimized, with the result that the highest pyruvate oxidase yield (4106·9 U l-1 ) of the recombinant E. colipET28a-pod was obtained under conditions of 25°C, 0·5 mmol l-1 IPTG, 0·5 OD600 , after 24 h of induction, which was 34·2 times the yield achieved with the wild-type strain. The soluble pyruvate oxidase contributed 99·6% of the total pyruvate oxidase expressed. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrates that a highly soluble pyruvate oxidase can be obtained in recombinant Escherichia coli by optimizing vectors and induction conditions. The pyruvate oxidase yield achieved is the highest reported so far, which provides a convenient and cost-saving way to produce pyruvate oxidase. This research promotes pyruvate oxidase application in the pharmaceutical and biochemical industries.
Collapse
Affiliation(s)
- J Lu
- Institute of Food Science and Engineering, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Y Zhao
- Institute of Food Science and Engineering, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - J Zhang
- Institute of Food Science and Engineering, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
6
|
Katsura K, Tomabechi Y, Matsuda T, Yonemochi M, Mikuni J, Ohsawa N, Terada T, Yokoyama S, Kukimoto-Niino M, Takemoto C, Shirouzu M. Phosphorylated and non-phosphorylated HCK kinase domains produced by cell-free protein expression. Protein Expr Purif 2018; 150:92-99. [PMID: 29793032 DOI: 10.1016/j.pep.2018.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 01/07/2023]
Abstract
Since phosphorylation is involved in various physiological events, kinases and interacting factors can be potential targets for drug discovery. For the development and improvement of inhibitors from the point of view of mechanistic enzymology, a cell-free protein synthesis system would be advantageous, since it could prepare mutant proteins easily. However, especially in the case of protein kinase, product solubility remains one of the major challenges. To overcome this problem, we prepared a chaperone-supplemented extract from Escherichia coli BL21 cells harboring a plasmid encoding a set of chaperone genes, dnaK, dnaJ, and grpE. We explored cell-disruption procedures and constructed an efficient protein synthesis system. Employing this system, we produced the kinase domain of human hematopoietic cell kinase (HCK) to obtain further structural information about its molecular interaction with one of its inhibitors, previously developed by our group (RK-20449). Lower reaction temperature improved the solubility, and addition of a protein phosphatase (YpoH) facilitated the homogeneous production of the non-phosphorylated kinase domain. Crystals of the purified product were obtained and the kinase-inhibitor complex structure was solved at 1.7 Å resolution. In addition, results of kinase activity measurement, using a synthetic substrate, showed that the kinase activity was facilitated by autophosphorylation at Tyr416, as confirmed by the peptide mass mapping.
Collapse
Affiliation(s)
- Kazushige Katsura
- Protein Functional and Structural Biology Team, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yuri Tomabechi
- Protein Functional and Structural Biology Team, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takayoshi Matsuda
- Protein Functional and Structural Biology Team, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mayumi Yonemochi
- Protein Functional and Structural Biology Team, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Drug Discovery Structural Biology Platform Unit, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Junko Mikuni
- Protein Functional and Structural Biology Team, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Drug Discovery Structural Biology Platform Unit, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Noboru Ohsawa
- Protein Functional and Structural Biology Team, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takaho Terada
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shigeyuki Yokoyama
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mutsuko Kukimoto-Niino
- Protein Functional and Structural Biology Team, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Drug Discovery Structural Biology Platform Unit, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Chie Takemoto
- Protein Functional and Structural Biology Team, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Mikako Shirouzu
- Protein Functional and Structural Biology Team, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Drug Discovery Structural Biology Platform Unit, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
7
|
Expression of recombinant truncated domains of mucus-binding (Mub) protein of Lactobacillus plantarum in soluble and biologically active form. Protein Expr Purif 2017; 135:54-60. [DOI: 10.1016/j.pep.2017.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/19/2017] [Accepted: 04/28/2017] [Indexed: 12/31/2022]
|
8
|
|
9
|
Abstract
NMR analyses of the structure, dynamics, and interactions of the Src family kinases (SFKs) have been hindered by the limited ability to obtain sufficient amounts of properly folded, soluble protein from bacterial expression systems, to allow these studies to be performed in an economically viable manner. In this chapter, we detail our attempts to overcome these difficulties using the catalytic domain (SrcCD) of c-Src, the prototypical SFK, as an illustrative example. We describe in detail two general methods to express and purify SrcCD from Escherichia coli expression systems in both fully active wild-type and kinase-deficient mutant forms, allowing the efficient and cost-effective labeling by NMR-active isotopes for solution NMR studies.
Collapse
|
10
|
Campos-Olivas R, Marenchino M, Scapozza L, Gervasio FL. Backbone assignment of the tyrosine kinase Src catalytic domain in complex with imatinib. BIOMOLECULAR NMR ASSIGNMENTS 2011; 5:221-224. [PMID: 21523440 DOI: 10.1007/s12104-011-9304-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 04/14/2011] [Indexed: 05/30/2023]
Abstract
The Src tyrosine kinase is the paradigm of an oncogenic kinase, and of regulation by intramolecular inhibitory interactions, as well as an important anticancer target due to its roles in cell proliferation and metastasis. The assignment of backbone (1)H(N), (13)C(α), (13)CO, and (15)N, and sidechain (13)C(β) resonances of the catalytic domain of Src (283 residues) in complex with the anticancer drug Imatinib is reported here. Consistent with previous X-ray studies of the same complex, most signals from the activation loop are not detected, indicating that, even in the presence of the drug, it probably adopts highly heterogeneous conformations in intermediate exchange. For the rest of the polypeptide backbone, assignments have been completed for ~88% of residues, with only a few solvent-exposed amides remaining unassigned.
Collapse
Affiliation(s)
- Ramón Campos-Olivas
- Spectroscopy and NMR Unit, Structural and Computational Biology Programme, Spanish National Cancer Center (CNIO), C. Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| | | | | | | |
Collapse
|
11
|
Bacterial expression and purification of active hematopoietic cell kinase. Protein Expr Purif 2011; 78:14-21. [PMID: 21385611 DOI: 10.1016/j.pep.2011.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 02/24/2011] [Accepted: 03/02/2011] [Indexed: 11/23/2022]
Abstract
Src family kinases (SFKs) are traditionally purified from eukaryotic expression systems. These expression systems can be costly, yield heterogeneously phosphorylated protein samples and present difficulties when metabolic labeling is required for structural studies. Therefore, many attempts have been made to develop bacterial purification systems for SFKs. So far, high-yield bacterial expression systems have only been achieved for SFK kinase domains or for inactive mutants of constructs containing the regulatory SH3 and SH2 domains, but not for their active forms. Herein described is a bacterial expression system for the wild type, active SFK Hck containing SH3, SH2 and kinase domains. Hck plays an important role in phagocyte function as well as the etiology of chronic myeloid leukemia as Hck is an interaction partner of Bcr-Abl. Structural studies of Hck are essential to fully understand the signaling processes involved in host defense and leukemogenesis. Successful bacterial expression of Hck was possible by a dual strategy: (1) co-expression with YopH phosphatase in order to control host toxicity, and (2) expression in a bacterial strain that is RNase E deficient, which dramatically increased overall expression levels. The expressed Hck construct is unphosphorylated and appears to be in an open conformation. Bacterially expressed Hck is capable of autophosphorylation, phosphorylates substrate at rates comparable to insect cell expressed Hck, and can be inhibited by staurosporine and Csk.
Collapse
|
12
|
Francis DM, Page R. Strategies to optimize protein expression in E. coli. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2010; Chapter 5:5.24.1-5.24.29. [PMID: 20814932 PMCID: PMC7162232 DOI: 10.1002/0471140864.ps0524s61] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recombinant protein expression in Escherichia coli (E. coli) is simple, fast, inexpensive, and robust, with the expressed protein comprising up to 50 percent of the total cellular protein. However, it also has disadvantages. For example, the rapidity of bacterial protein expression often results in unfolded/misfolded proteins, especially for heterologous proteins that require longer times and/or molecular chaperones to fold correctly. In addition, the highly reductive environment of the bacterial cytosol and the inability of E. coli to perform several eukaryotic post-translational modifications results in the insoluble expression of proteins that require these modifications for folding and activity. Fortunately, multiple, novel reagents and techniques have been developed that allow for the efficient, soluble production of a diverse range of heterologous proteins in E. coli. This overview describes variables at each stage of a protein expression experiment that can influence solubility and offers a summary of strategies used to optimize soluble expression in E. coli.
Collapse
|