1
|
Shchukina A, Schwarz TC, Nowakowski M, Konrat R, Kazimierczuk K. Non-uniform sampling of similar NMR spectra and its application to studies of the interaction between alpha-synuclein and liposomes. JOURNAL OF BIOMOLECULAR NMR 2023; 77:149-163. [PMID: 37237169 PMCID: PMC10406685 DOI: 10.1007/s10858-023-00418-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
The accelerated acquisition of multidimensional NMR spectra using sparse non-uniform sampling (NUS) has been widely adopted in recent years. The key concept in NUS is that a major part of the data is omitted during measurement, and then reconstructed using, for example, compressed sensing (CS) methods. CS requires spectra to be compressible, that is, they should contain relatively few "significant" points. The more compressible the spectrum, the fewer experimental NUS points needed in order for it to be accurately reconstructed. In this paper we show that the CS processing of similar spectra can be enhanced by reconstructing only the differences between them. Accurate reconstruction can be obtained at lower sampling levels as the difference is sparser than the spectrum itself. In many situations this method is superior to "conventional" compressed sensing. We exemplify the concept of "difference CS" with one such case-the study of alpha-synuclein binding to liposomes and its dependence on temperature. To obtain information on temperature-dependent transitions between different states, we need to acquire several dozen spectra at various temperatures, with and without the presence of liposomes. Our detailed investigation reveals that changes in the binding modes of the alpha-synuclein ensemble are not only temperature-dependent but also show non-linear behavior in their transitions. Our proposed CS processing approach dramatically reduces the number of NUS points required and thus significantly shortens the experimental time.
Collapse
Affiliation(s)
- Alexandra Shchukina
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Thomas C Schwarz
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter Campus 5, 1030, Vienna, Austria
| | - Michał Nowakowski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Robert Konrat
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter Campus 5, 1030, Vienna, Austria
| | | |
Collapse
|
2
|
MacKenzie DWS, Schaefer A, Steckner J, Leo CA, Naser D, Artikis E, Broom A, Ko T, Shah P, Ney MQ, Tran E, Smith MTJ, Fuglestad B, Wand AJ, Brooks CL, Meiering EM. A fine balance of hydrophobic-electrostatic communication pathways in a pH-switching protein. Proc Natl Acad Sci U S A 2022; 119:e2119686119. [PMID: 35737838 PMCID: PMC9245636 DOI: 10.1073/pnas.2119686119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/29/2022] [Indexed: 12/24/2022] Open
Abstract
Allostery is the phenomenon of coupling between distal binding sites in a protein. Such coupling is at the crux of protein function and regulation in a myriad of scenarios, yet determining the molecular mechanisms of coupling networks in proteins remains a major challenge. Here, we report mechanisms governing pH-dependent myristoyl switching in monomeric hisactophilin, whereby the myristoyl moves between a sequestered state, i.e., buried within the core of the protein, to an accessible state, in which the myristoyl has increased accessibility for membrane binding. Measurements of the pH and temperature dependence of amide chemical shifts reveal protein local structural stability and conformational heterogeneity that accompany switching. An analysis of these measurements using a thermodynamic cycle framework shows that myristoyl-proton coupling at the single-residue level exists in a fine balance and extends throughout the protein. Strikingly, small changes in the stereochemistry or size of core and surface hydrophobic residues by point mutations readily break, restore, or tune myristoyl switch energetics. Synthesizing the experimental results with those of molecular dynamics simulations illuminates atomistic details of coupling throughout the protein, featuring a large network of hydrophobic interactions that work in concert with key electrostatic interactions. The simulations were critical for discerning which of the many ionizable residues in hisactophilin are important for switching and identifying the contributions of nonnative interactions in switching. The strategy of using temperature-dependent NMR presented here offers a powerful, widely applicable way to elucidate the molecular mechanisms of allostery in proteins at high resolution.
Collapse
Affiliation(s)
| | - Anna Schaefer
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Julia Steckner
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Christopher A. Leo
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Dalia Naser
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Efrosini Artikis
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI 48109
| | - Aron Broom
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Travis Ko
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Purnank Shah
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Mikaela Q. Ney
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Elisa Tran
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Martin T. J. Smith
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Brian Fuglestad
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - A. Joshua Wand
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Charles L. Brooks
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI 48109
| | | |
Collapse
|
3
|
Trainor K, Palumbo JA, MacKenzie DWS, Meiering EM. Temperature dependence of NMR chemical shifts: Tracking and statistical analysis. Protein Sci 2019; 29:306-314. [PMID: 31730280 PMCID: PMC6933856 DOI: 10.1002/pro.3785] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 11/28/2022]
Abstract
Isotropic chemical shifts measured by solution nuclear magnetic resonance (NMR) spectroscopy offer extensive insights into protein structure and dynamics. Temperature dependences add a valuable dimension; notably, the temperature dependences of amide proton chemical shifts are valuable probes of hydrogen bonding, temperature‐dependent loss of structure, and exchange between distinct protein conformations. Accordingly, their uses include structural analysis of both folded and disordered proteins, and determination of the effects of mutations, binding, or solution conditions on protein energetics. Fundamentally, these temperature dependences result from changes in the local magnetic environments of nuclei, but correlations with global thermodynamic parameters measured via calorimetric methods have been observed. Although the temperature dependences of amide proton and nitrogen chemical shifts are often well approximated by a linear model, deviations from linearity are also observed and may be interpreted as evidence of fast exchange between distinct conformational states. Here, we describe computational methods, accessible via the Shift‐T web server, including an automated tracking algorithm that propagates initial (single temperature) 1H—15N cross peak assignments to spectra collected over a range of temperatures. Amide proton and nitrogen temperature coefficients (slopes determined by fitting chemical shift vs. temperature data to a linear model) are subsequently calculated. Also included are methods for the detection of systematic, statistically significant deviation from linearity (curvature) in the temperature dependences of amide proton chemical shifts. The use and utility of these methods are illustrated by example, and the Shift‐T web server is freely available at http://meieringlab.uwaterloo.ca/shiftt.
Collapse
Affiliation(s)
- Kyle Trainor
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Jeffrey A Palumbo
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | | | | |
Collapse
|
4
|
Kumirov VK, Dykstra EM, Hall BM, Anderson WJ, Szyszka TN, Cordes MHJ. Multistep mutational transformation of a protein fold through structural intermediates. Protein Sci 2018; 27:1767-1779. [PMID: 30051937 DOI: 10.1002/pro.3488] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/24/2022]
Abstract
New protein folds may evolve from existing folds through metamorphic evolution involving a dramatic switch in structure. To mimic pathways by which amino acid sequence changes could induce a change in fold, we designed two folded hybrids of Xfaso 1 and Pfl 6, a pair of homologous Cro protein sequences with ~40% identity but different folds (all-α vs. α + β, respectively). Each hybrid, XPH1 or XPH2, is 85% identical in sequence to its parent, Xfaso 1 or Pfl 6, respectively; 55% identical to its noncognate parent; and ~70% identical to the other hybrid. XPH1 and XPH2 also feature a designed hybrid chameleon sequence corresponding to the C-terminal region, which switched from α-helical to β-sheet structure during Cro evolution. We report solution nuclear magnetic resonance (NMR) structures of XPH1 and XPH2 at 0.3 Å and 0.5 Å backbone root mean square deviation (RMSD), respectively. XPH1 retains a global fold generally similar to Xfaso 1, and XPH2 retains a fold similar to Pfl 6, as measured by TM-align scores (~0.7), DALI Z-scores (7-9), and backbone RMSD (2-3 Å RMSD for the most ordered regions). However, these scores also indicate significant deviations in structure. Most notably, XPH1 and XPH2 have different, and intermediate, secondary structure content relative to Xfaso 1 and Pfl 6. The multistep progression in sequence, from Xfaso 1 to XPH1 to XPH2 to Pfl 6, thus involves both abrupt and gradual changes in folding pattern. The plasticity of some protein folds may allow for "polymetamorphic" evolution through intermediate structures.
Collapse
Affiliation(s)
- Vlad K Kumirov
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721-0088
| | - Emily M Dykstra
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721-0088
| | - Branwen M Hall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721-0088
| | - William J Anderson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721-0088
| | - Taylor N Szyszka
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721-0088
| | - Matthew H J Cordes
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721-0088
| |
Collapse
|
5
|
Okazaki H, Matsuo N, Tenno T, Goda N, Shigemitsu Y, Ota M, Hiroaki H. Using 1 H N amide temperature coefficients to define intrinsically disordered regions: An alternative NMR method. Protein Sci 2018; 27:1821-1830. [PMID: 30098073 DOI: 10.1002/pro.3485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 02/02/2023]
Abstract
This report describes a cost-effective experimental method for determining an intrinsically disordered protein (IDP) region in a given protein sample. In this area, the most popular (and conventional) means is using the amide (1 HN ) NMR signal chemical shift distributed in the range of 7.5-8.5 ppm. For this study, we applied an additional step: analysis of 1 HN chemical shift temperature coefficients (1 HN -CSTCs) of the signals. We measured 1 H-15 N two-dimensional NMR spectra of model IDP samples and ordered samples at four temperatures (288, 293, 298, and 303 K). We derived the 1 HN -CSTC threshold deviation, which gives the best correlation of ordered and disordered regions among the proteins examined (below -3.6 ppb/K). By combining these criteria with the newly optimized chemical shift range (7.8-8.5 ppm), the ratios of both true positive and true negative were improved by approximately 19% (62-81%) compared with the conventional "chemical shift-only" method.
Collapse
Affiliation(s)
- Hiroki Okazaki
- Department of Complex Systems Science, Graduate School of Information Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Naoki Matsuo
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Takeshi Tenno
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, 464-8601, Japan.,BeCellBar LLC, Business Incubation Center, Nagoya University, Nagoya, 464-8601, Aichi, Japan
| | - Natsuko Goda
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Yoshiki Shigemitsu
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Motonori Ota
- Department of Complex Systems Science, Graduate School of Information Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Hidekazu Hiroaki
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, 464-8601, Japan.,BeCellBar LLC, Business Incubation Center, Nagoya University, Nagoya, 464-8601, Aichi, Japan.,The Structural Biology Research Center and Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
6
|
Doyle CM, Rumfeldt JA, Broom HR, Sekhar A, Kay LE, Meiering EM. Concurrent Increases and Decreases in Local Stability and Conformational Heterogeneity in Cu, Zn Superoxide Dismutase Variants Revealed by Temperature-Dependence of Amide Chemical Shifts. Biochemistry 2016; 55:1346-61. [PMID: 26849066 DOI: 10.1021/acs.biochem.5b01133] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The chemical shifts of backbone amide protons in proteins are sensitive reporters of local structural stability and conformational heterogeneity, which can be determined from their readily measured linear and nonlinear temperature-dependences, respectively. Here we report analyses of amide proton temperature-dependences for native dimeric Cu, Zn superoxide dismutase (holo pWT SOD1) and structurally diverse mutant SOD1s associated with amyotrophic lateral sclerosis (ALS). Holo pWT SOD1 loses structure with temperature first at its periphery and, while having extremely high global stability, nevertheless exhibits extensive conformational heterogeneity, with ∼1 in 5 residues showing evidence for population of low energy alternative states. The holo G93A and E100G ALS mutants have moderately decreased global stability, whereas V148I is slightly stabilized. Comparison of the holo mutants as well as the marginally stable immature monomeric unmetalated and disulfide-reduced (apo(2SH)) pWT with holo pWT shows that changes in the local structural stability of individual amides vary greatly, with average changes corresponding to differences in global protein stability measured by differential scanning calorimetry. Mutants also exhibit altered conformational heterogeneity compared to pWT. Strikingly, substantial increases as well as decreases in local stability and conformational heterogeneity occur, in particular upon maturation and for G93A. Thus, the temperature-dependence of amide shifts for SOD1 variants is a rich source of information on the location and extent of perturbation of structure upon covalent changes and ligand binding. The implications for potential mechanisms of toxic misfolding of SOD1 in disease and for general aspects of protein energetics, including entropy-enthalpy compensation, are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Lewis E Kay
- Program in Molecular Structure and Function, Hospital for Sick Children , Toronto, Canada
| | | |
Collapse
|
7
|
Newcomer RL, Fraser LCR, Teschke CM, Alexandrescu AT. Mechanism of Protein Denaturation: Partial Unfolding of the P22 Coat Protein I-Domain by Urea Binding. Biophys J 2015; 109:2666-2677. [PMID: 26682823 PMCID: PMC4699920 DOI: 10.1016/j.bpj.2015.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/13/2015] [Accepted: 11/06/2015] [Indexed: 01/30/2023] Open
Abstract
The I-domain is an insertion domain of the bacteriophage P22 coat protein that drives rapid folding and accounts for over half of the stability of the full-length protein. We sought to determine the role of hydrogen bonds (H-bonds) in the unfolding of the I-domain by examining (3)JNC' couplings transmitted through H-bonds, the temperature and urea-concentration dependence of (1)HN and (15)N chemical shifts, and native-state hydrogen exchange at urea concentrations where the domain is predominantly folded. The native-state hydrogen-exchange data suggest that the six-stranded β-barrel core of the I-domain is more stable against unfolding than a smaller subdomain comprised of a short α-helix and three-stranded β-sheet. H-bonds, separately determined from solvent protection and (3)JNC' H-bond couplings, are identified with an accuracy of 90% by (1)HN temperature coefficients. The accuracy is improved to 95% when (15)N temperature coefficients are also included. In contrast, the urea dependence of (1)HN and (15)N chemical shifts is unrelated to H-bonding. The protein segments with the largest chemical-shift changes in the presence of urea show curved or sigmoidal titration curves suggestive of direct urea binding. Nuclear Overhauser effects to urea for these segments are also consistent with specific urea-binding sites in the I-domain. Taken together, the results support a mechanism of urea unfolding in which denaturant binds to distinct sites in the I-domain. Disordered segments bind urea more readily than regions in stable secondary structure. The locations of the putative urea-binding sites correlate with the lower stability of the structure against solvent exchange, suggesting that partial unfolding of the structure is related to urea accessibility.
Collapse
Affiliation(s)
- Rebecca L Newcomer
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - LaTasha C R Fraser
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Carolyn M Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut; Department of Chemistry, University of Connecticut, Storrs, Connecticut.
| | - Andrei T Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut.
| |
Collapse
|
8
|
Stewart KL, Nelson MR, Eaton KV, Anderson WJ, Cordes MHJ. A role for indels in the evolution of Cro protein folds. Proteins 2013; 81:1988-96. [PMID: 23843258 DOI: 10.1002/prot.24358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 05/30/2013] [Accepted: 06/10/2013] [Indexed: 11/06/2022]
Abstract
Insertions and deletions in protein sequences, or indels, can disrupt structure and may result in changes in protein folds during evolution or in association with alternative splicing. Pfl 6 and Xfaso 1 are two proteins in the Cro family that share a common ancestor but have different folds. Sequence alignments of the two proteins show two gaps, one at the N terminus, where the sequence of Xfaso 1 is two residues shorter, and one near the center of the sequence, where the sequence of Pfl 6 is five residues shorter. To test the potential importance of indels in Cro protein evolution, we generated hybrid variants of Pfl 6 and Xfaso 1 with indels in one or both regions, chosen according to several plausible sequence alignments. All but one deletion variant completely unfolded both proteins, showing that a longer N-terminal sequence was critical for Pfl 6 folding and a longer central region sequence was critical for Xfaso 1 folding. By contrast, Xfaso 1 tolerated a longer N-terminal sequence with little destabilization, and Pfl 6 tolerated central region insertions, albeit with substantial effects on thermal stability and some perturbation of the surrounding structure. None of the mutations appeared to convert one stable fold into the other. On the basis of this two-protein comparison, short insertion and deletion mutations probably played a role in evolutionary fold change in the Cro family, but were also not the only factors.
Collapse
Affiliation(s)
- Katie L Stewart
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721-0088
| | | | | | | | | |
Collapse
|
9
|
Campos LA, Sadqi M, Liu J, Wang X, English DS, Muñoz V. Gradual Disordering of the Native State on a Slow Two-State Folding Protein Monitored by Single-Molecule Fluorescence Spectroscopy and NMR. J Phys Chem B 2013; 117:13120-31. [DOI: 10.1021/jp403051k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Luis A. Campos
- Centro de Investigaciones
Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid 28040,
Spain
- Department
of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Mourad Sadqi
- Centro de Investigaciones
Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid 28040,
Spain
- Department
of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Jianwei Liu
- Department
of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Xiang Wang
- Department
of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Douglas S. English
- Department
of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Victor Muñoz
- Centro de Investigaciones
Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid 28040,
Spain
- Department
of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
10
|
Vallurupalli P, Bouvignies G, Kay LE. Increasing the exchange time-scale that can be probed by CPMG relaxation dispersion NMR. J Phys Chem B 2011; 115:14891-900. [PMID: 22077866 DOI: 10.1021/jp209610v] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carr-Purcell-Meiboom-Gill relaxation dispersion NMR spectroscopy has emerged as a valuable tool to characterize conformational exchange between major and minor states in a large variety of biomolecules. The window of exchange that is amenable for study, corresponding to rates on the order of 2000 s(-1) or less, is limiting, however. Here we show that a combined analysis of both amide (15)N and (1)H(N) CPMG profiles and major state exchange induced (15)N chemical shift changes leads to significant increases in the exchange time scale for which accurate exchange parameters and chemical shift differences between the interconverting states can be obtained. The utility of the approach is illustrated with examples involving a pair of protein systems that are in the moderately fast exchange regime. In these cases the analysis of dispersion profiles alone is not sufficient to obtain robust measures of exchange parameters and chemical shift differences. Inclusion of major state exchange induced (15)N chemical shift changes measured in ((15)N-(1)H(N)) HMQC and HSQC data sets in addition to the (15)N and (1)H(N) dispersion profiles in the analysis "breaks" the correlation in parameters, allowing accurate values to be obtained. The approach is straightforward to implement and makes use of HMQC/HSQC data sets that are recorded as a matter of routine to obtain chemical shifts of the excited state. It promises to increase the range of exchanging systems involving low populated, transiently formed excited states that can be studied by relaxation dispersion NMR.
Collapse
Affiliation(s)
- Pramodh Vallurupalli
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|