1
|
Rodgers A, Sawaged M, Ostrovsky D, Vugmeyster L. Effect of Cross-Seeding of Wild-Type Amyloid-β 1-40 Peptides with Post-translationally Modified Fibrils on Internal Dynamics of the Fibrils Using Deuterium Solid-State NMR. J Phys Chem B 2023; 127:2887-2899. [PMID: 36952330 PMCID: PMC10257444 DOI: 10.1021/acs.jpcb.2c07817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Post-translationally modified (PTM) amyloid-β (Aβ) species can play an important role in modulating Alzheimer's disease pathology. These relatively less populated modifications can cross-seed the wild-type Aβ peptides to produce fibrils that retain many structural and functional features of the original PTM variants. We focus on studies of internal flexibility in the cross-seeded Aβ1-40 fibrils originating from seeding with two PTM variants with modifications in the disordered N-terminal domain: ΔE3 truncation and S8-phosphorylation. We employ an array of 2H solid-state NMR techniques, including line shape analysis over a broad temperature range, longitudinal relaxation, and quadrupolar CPMG, to assess the dynamics of the cross-seeded fibrils. The focus is placed on selected side-chain sites in the disordered N-terminal domain (G9 and V12) and hydrophobic core methyl and aromatic groups (L17, L34, M35, V36, and F19). We find that many of the essential features of the dynamics present in the original PTM seeds persist in the cross-seeded fibrils, and several of the characteristic features are even enhanced. This is particularly true for the activation energies of the rotameric motions and large-scale rearrangements of the N-terminal domain. Thus, our results on the dynamics complement prior structural and cell toxicity studies, suggesting that many PTM Aβ species can aggressively cross-seed the wild-type peptide in a manner that propagates the PTM's signature.
Collapse
Affiliation(s)
- Aryana Rodgers
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Matthew Sawaged
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver CO USA 80204
| | - Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| |
Collapse
|
2
|
Vugmeyster L, Nichols PJ, Ostrovsky D, McKnight CJ, Vögeli B. Slow methyl axes motions in perdeuterated villin headpiece subdomain probed by cross-correlated NMR relaxation measurements. MAGNETOCHEMISTRY (BASEL, SWITZERLAND) 2023; 9:33. [PMID: 36776538 PMCID: PMC9910280 DOI: 10.3390/magnetochemistry9010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Protein methyl groups can participate in multiple motional modes on different time scales. Sub-nanosecond to nano-second time scale motions of methyl axes are particularly challenging to detect for small proteins in solutions. In this work we employ NMR relaxation interference between the methyl H-H/H-C dipole-dipole interactions [Sun&Tugarinov, J. Magn. Reason. 2012] to characterize methyl axes motions as a function of temperature in a small model protein villin headpiece subdomain (HP36), in which all non-exchangeable protons are deuterated with the exception of methyl groups of leucine and valine residues. The data points to the existence of slow motional modes of methyl axes on sub-nanosecond to nanosecond time scales. Further, at high temperatures for which the overall tumbling of the protein is on the order of 2 ns, we observe a coupling between the slow internal motion and the overall molecular tumbling, based on the anomalous order parameters and their temperature-dependent trends. The addition of 28%(w/w) glycerol-d8 increases the viscosity of the solvent and separates the timescales of internal and overall tumbling, thus permitting for another view of the necessity of the coupling assumption for these sites at high temperatures.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado at Denver, Denver, CO 80204
| | - Parker J. Nichols
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado at Denver, Denver, CO 80204
| | - C. James McKnight
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, 02118
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045
| |
Collapse
|
3
|
Vugmeyster L, Au DF, Smith MC, Ostrovsky D. Comparative Hydrophobic Core Dynamics Between Wild-Type Amyloid-β Fibrils, Glutamate-3 Truncation, and Serine-8 Phosphorylation. Chemphyschem 2022; 23:e202100709. [PMID: 34837296 PMCID: PMC9484291 DOI: 10.1002/cphc.202100709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/10/2021] [Indexed: 02/06/2023]
Abstract
Post-translational modifications (PTMs) of amyloid-β (Aβ) species are implicated in the modulation of overall toxicities and aggregation propensities. We investigated the internal dynamics in the hydrophobic core of the truncated ΔE3 mutant fibrils of Aβ1-40 and compared them with prior and new data for wild-type fibrils as well as with phosphorylated S8 fibrils. Deuteron static solid-state NMR techniques, spanning line-shape analysis, longitudinal relaxation, and chemical exchange saturation transfer methods, were employed to assess the rotameric jumps of several methyl-bearing and aromatic groups in the core of the fibrils. Taken together, the results indicate the rather significant influence of the PTMs on the hydrophobic core dynamics, which propagates far beyond the local site of the chemical modification. The phosphorylated S8 fibrils display an overall rigidifying of the core based on the higher activation barriers of motions than the wild-type fibrils, whereas the ΔE3 fibrils induce a broader variety of changes, some of which are thermodynamic in nature rather than the kinetic ones.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Dan Fai Au
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Matthew C. Smith
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver CO USA 80204
| |
Collapse
|
4
|
Nichols PJ, Falconer I, Griffin A, Mant C, Hodges R, McKnight CJ, Vögeli B, Vugmeyster L. Deuteration of nonexchangeable protons on proteins affects their thermal stability, side-chain dynamics, and hydrophobicity. Protein Sci 2020; 29:1641-1654. [PMID: 32356390 DOI: 10.1002/pro.3878] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/10/2020] [Accepted: 04/26/2020] [Indexed: 11/06/2022]
Abstract
We have investigated the effect of deuteration of non-exchangeable protons on protein global thermal stability, hydrophobicity, and local flexibility using well-known thermostable model systems such as the villin headpiece subdomain (HP36) and the third immunoglobulin G-binding domain of protein G (GB3). Reversed-phase high-performance liquid chromatography (RP-HPLC) measurements as a function of temperature probe global thermal stability in the presence of acetonitrile, while differential scanning calorimetry determines thermal stability in solution. Both indicate small but measurable changes in the order of several degrees. RP-HPLC also permitted quantification of the effect of deuteration of just three core phenylalanine side chains of HP36. NMR dynamics investigation has focused on methyl axes motions using cross-correlated relaxation measurements. The analysis of order parameters provided a complex picture indicating that deuteration generally increases motional amplitudes of sub-nanosecond motion in GB3 but decreases those in HP36. Combined with earlier dynamics measurements at Cα -Cβ sites and backbone sites of GB3, which probed slower time scales, the results point to the need to probe multiple atoms in the protein and variety of time scales to the discern the full complexity of the effects of deuteration on dynamics.
Collapse
Affiliation(s)
- Parker J Nichols
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Isaac Falconer
- Department of Chemistry, University of Colorado at Denver, Denver, Colorado, USA.,Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Aaron Griffin
- Department of Chemistry, University of Colorado at Denver, Denver, Colorado, USA
| | - Colin Mant
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Robert Hodges
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Christopher J McKnight
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Liliya Vugmeyster
- Department of Chemistry, University of Colorado at Denver, Denver, Colorado, USA
| |
Collapse
|
5
|
Vugmeyster L, Griffin A, Ostrovsky D, Bhattacharya S, Nichols PJ, McKnight CJ, Vögeli B. Correlated motions of C'-N and C α-C β pairs in protonated and per-deuterated GB3. JOURNAL OF BIOMOLECULAR NMR 2018; 72:39-54. [PMID: 30121872 PMCID: PMC6218248 DOI: 10.1007/s10858-018-0205-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/09/2018] [Indexed: 06/08/2023]
Abstract
We investigated correlated µs-ms time scale motions of neighboring 13C'-15N and 13Cα-13Cβ nuclei in both protonated and perdeuterated samples of GB3. The techniques employed, NMR relaxation due to cross-correlated chemical shift modulations, specifically target concerted changes in the isotropic chemical shifts of the two nuclei associated with spatial fluctuations. Field-dependence of the relaxation rates permits identification of the parameters defining the chemical exchange rate constant under the assumption of a two-site exchange. The time scale of motions falls into the intermediate to fast regime (with respect to the chemical shift time scale, 100-400 s-1 range) for the 13C'-15N pairs and into the slow to intermediate regime for the 13Cα-13Cβ pairs (about 150 s-1). Comparison of the results obtained for protonated and deuterated GB3 suggests that deuteration has a tendency to reduce these slow scale correlated motions, especially for the 13Cα-13Cβ pairs.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado at Denver, 1201 Larimer Street, Denver, CO, 80204, USA.
| | - Aaron Griffin
- Department of Chemistry, University of Colorado at Denver, 1201 Larimer Street, Denver, CO, 80204, USA
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado at Denver, Denver, CO, 80204, USA
| | | | - Parker J Nichols
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - C James McKnight
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
6
|
Falconer IB, Mant CT, McKnight CJ, Vugmeyster L, Hodges R. Optimized purification of a fusion protein by reversed-phase high performance liquid chromatography informed by the linear solvent strength model. J Chromatogr A 2017; 1521:44-52. [PMID: 28942999 DOI: 10.1016/j.chroma.2017.08.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/07/2017] [Accepted: 08/24/2017] [Indexed: 11/19/2022]
Abstract
Fusion protein systems are commonly used for expression of small proteins and peptides. An important criterion for a fusion protein system to be useful is the ability to separate the protein of interest from the tag. Additionally, because no protease cleaves fusion proteins with 100% efficiency, the ability to separate the desired peptide from any remaining uncleaved protein is also necessary. This is likely to be the more difficult task as at least a portion of the sequence of the fusion protein is identical to that of the protein of interest. When a high level of purity is required, gradient elution reversed-phase HPLC is frequently used as a final purification step. Shallow gradients are often advantageous for maximizing both the purity and yield of the final product; however, the relationship between relative retention times at shallow gradients and those at steeper gradients typically used for analytical HPLC are not always straightforward. In this work, we report reversed-phase HPLC results for the fusion protein system consisting of the N-terminal domain of ribosomal protein L9 (NTL9) and the 36-residue villin headpiece subdomain (HP36) linked by a recognition sequence for the protease factor Xa. This system represents an excellent example of the difficulties in purification that may arise from this unexpected elution behavior at shallow gradients. Additionally, we report on the sensitivity of this elution behavior to the concentration of the additive trifluoroacetic acid in the mobile phase and present optimized conditions for separating HP36 from the full fusion protein by reversed-phase HPLC using a shallow gradient. Finally, we suggest that these findings are relevant to the purification of other fusion protein systems, for which similar problems may arise, and support this suggestion using insights from the linear solvent strength model of gradient elution liquid chromatography.
Collapse
Affiliation(s)
- Isaac B Falconer
- Deparment of Chemistry, University of Colorado Denver, Denver, CO, 80204, United States
| | - Colin T Mant
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - C James McKnight
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, 02118, United States
| | - Liliya Vugmeyster
- Deparment of Chemistry, University of Colorado Denver, Denver, CO, 80204, United States.
| | - Robert Hodges
- Department of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, United States.
| |
Collapse
|
7
|
Baltzis AS, Glykos NM. Characterizing a partially ordered miniprotein through folding molecular dynamics simulations: Comparison with the experimental data. Protein Sci 2015; 25:587-96. [PMID: 26609791 DOI: 10.1002/pro.2850] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/22/2015] [Accepted: 11/15/2015] [Indexed: 12/31/2022]
Abstract
The villin headpiece helical subdomain (HP36) is one of the best known model systems for computational studies of fast-folding all-α miniproteins. HP21 is a peptide fragment-derived from HP36-comprising only the first and second helices of the full domain. Experimental studies showed that although HP21 is mostly unfolded in solution, it does maintain some persistent native-like structure as indicated by the analysis of NMR-derived chemical shifts. Here we compare the experimental data for HP21 with the results obtained from a 15-μs long folding molecular dynamics simulation performed in explicit water and with full electrostatics. We find that the simulation is in good agreement with the experiment and faithfully reproduces the major experimental findings, namely that (a) HP21 is disordered in solution with <10% of the trajectory corresponding to transiently stable structures, (b) the most highly populated conformer is a native-like structure with an RMSD from the corresponding portion of the HP36 crystal structure of <1 Å, (c) the simulation-derived chemical shifts-over the whole length of the trajectory-are in reasonable agreement with the experiment giving reduced χ(2) values of 1.6, 1.4, and 0.8 for the Δδ(13) C(α) , Δδ(13) CO, and Δδ(13) C(β) secondary shifts, respectively (becoming 0.8, 0.7, and 0.3 when only the major peptide conformer is considered), and finally, (d) the secondary structure propensity scores are in very good agreement with the experiment and clearly indicate the higher stability of the first helix. We conclude that folding molecular dynamics simulations can be a useful tool for the structural characterization of even marginally stable peptides.
Collapse
Affiliation(s)
- Athanasios S Baltzis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Alexandroupolis, 68100, Greece
| | - Nicholas M Glykos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Alexandroupolis, 68100, Greece
| |
Collapse
|
8
|
Harpole KW, O'Brien ES, Clark MA, McKnight CJ, Vugmeyster L, Wand AJ. The unusual internal motion of the villin headpiece subdomain. Protein Sci 2015; 25:423-32. [PMID: 26473993 DOI: 10.1002/pro.2831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 10/12/2015] [Indexed: 11/06/2022]
Abstract
The thermostable 36-residue subdomain of the villin headpiece (HP36) is the smallest known cooperatively folding protein. Although the folding and internal dynamics of HP36 and close variants have been extensively studied, there has not been a comprehensive investigation of side-chain motion in this protein. Here, the fast motion of methyl-bearing amino acid side chains is explored over a range of temperatures using site-resolved solution nuclear magnetic resonance deuterium relaxation. The squared generalized order parameters of methyl groups extensively spatially segregate according to motional classes. This has not been observed before in any protein studied using this methodology. The class segregation is preserved from 275 to 305 K. Motions detected in Helix 3 suggest a fast timescale of conformational heterogeneity that has not been previously observed but is consistent with a range of folding and dynamics studies. Finally, a comparison between the order parameters in solution with previous results based on solid-state nuclear magnetic resonance deuterium line shape analysis of HP36 in partially hydrated powders shows a clear disagreement for half of the sites. This result has significant implications for the interpretation of data derived from a variety of approaches that rely on partially hydrated protein samples.
Collapse
Affiliation(s)
- Kyle W Harpole
- Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, 19104-6059
| | - Evan S O'Brien
- Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, 19104-6059
| | - Matthew A Clark
- Department of Chemistry, University of Alaska Anchorage, Anchorage, Alaska, 99508
| | - C James McKnight
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Liliya Vugmeyster
- Department of Chemistry, University of Alaska Anchorage, Anchorage, Alaska, 99508.,Department of Chemistry, University of Colorado at Denver, Denver, Colorado, 80204
| | - A Joshua Wand
- Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, 19104-6059
| |
Collapse
|
9
|
Vugmeyster L, Ostrovsky D, Fu R. (15)N CSA tensors and (15)N-(1)H dipolar couplings of protein hydrophobic core residues investigated by static solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 259:225-31. [PMID: 26367322 PMCID: PMC4600402 DOI: 10.1016/j.jmr.2015.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/24/2015] [Accepted: 08/28/2015] [Indexed: 06/01/2023]
Abstract
In this work, we assess the usefulness of static (15)N NMR techniques for the determination of the (15)N chemical shift anisotropy (CSA) tensor parameters and (15)N-(1)H dipolar splittings in powder protein samples. By using five single labeled samples of the villin headpiece subdomain protein in a hydrated lyophilized powder state, we determine the backbone (15)N CSA tensors at two temperatures, 22 and -35 °C, in order to get a snapshot of the variability across the residues and as a function of temperature. All sites probed belonged to the hydrophobic core and most of them were part of α-helical regions. The values of the anisotropy (which include the effect of the dynamics) varied between 130 and 156 ppm at 22 °C, while the values of the asymmetry were in the 0.32-0.082 range. The Leu-75 and Leu-61 backbone sites exhibited high mobility based on the values of their temperature-dependent anisotropy parameters. Under the assumption that most differences stem from dynamics, we obtained the values of the motional order parameters for the (15)N backbone sites. While a simple one-dimensional line shape experiment was used for the determination of the (15)N CSA parameters, a more advanced approach based on the "magic sandwich" SAMMY pulse sequence (Nevzorov and Opella, 2003) was employed for the determination of the (15)N-(1)H dipolar patterns, which yielded estimates of the dipolar couplings. Accordingly, the motional order parameters for the dipolar interaction were obtained. It was found that the order parameters from the CSA and dipolar measurements are highly correlated, validating that the variability between the residues is governed by the differences in dynamics. The values of the parameters obtained in this work can serve as reference values for developing more advanced magic-angle spinning recoupling techniques for multiple labeled samples.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado at Denver, 1201 Larimer St, Denver, CO 80204, United States.
| | - Dmitry Ostrovsky
- Department of Mathematics and Department of Physics, University of Colorado at Denver, 1201 Larimer Street, Denver, CO 80204, United States
| | - Riqiang Fu
- National High Field Magnetic Laboratory, 1800 E Paul Dirac Drive, Tallahassee, FL 32310, United States
| |
Collapse
|
10
|
Potapov A, Yau WM, Tycko R. Dynamic nuclear polarization-enhanced 13C NMR spectroscopy of static biological solids. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 231:5-14. [PMID: 23562665 PMCID: PMC3660528 DOI: 10.1016/j.jmr.2013.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/12/2013] [Accepted: 02/14/2013] [Indexed: 05/21/2023]
Abstract
We explore the possibility of using dynamic nuclear polarization (DNP) to enhance signals in structural studies of biological solids by solid state NMR without sample spinning. Specifically, we use 2D (13)C-(13)C exchange spectroscopy to probe the peptide backbone torsion angles (φ, ψ) in a series of selectively (13)C-labeled 40-residue β-amyloid (Aβ(1-40)) samples, in both fibrillar and non-fibrillar states. Experiments are carried out at 9.39 T and 8 K, using a static double-resonance NMR probe and low-power microwave irradiation at 264 GHz. In frozen solutions of Aβ(1-40) fibrils doped with DOTOPA-TEMPO, we observe DNP signal enhancement factors of 16-21. We show that the orientation- and frequency-dependent spin polarization exchange between sequential backbone carbonyl (13)C labels can be simulated accurately using a simple expression for the exchange rate, after experimentally determined homogeneous (13)C lineshapes are incorporated in the simulations. The experimental 2D (13)C-(13)C exchange spectra place constraints on the φ and ψ angles between the two carbonyl labels. Although the data are not sufficient to determine φ and ψ uniquely, the data do provide non-trivial constraints that could be included in structure calculations. With DNP at low temperatures, 2D (13)C-(13)C exchange spectra can be obtained from a 3.5 mg sample of Aβ(1-40) fibrils in 4 h or less, despite the broad (13)C chemical shift anisotropy line shapes that are observed in static samples.
Collapse
Affiliation(s)
- Alexey Potapov
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
| | | | | |
Collapse
|
11
|
Kienle S, Liese S, Schwierz N, Netz RR, Hugel T. The effect of temperature on single-polypeptide adsorption. Chemphyschem 2012; 13:982-9. [PMID: 22290722 DOI: 10.1002/cphc.201100776] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 12/19/2011] [Indexed: 11/08/2022]
Abstract
The hydrophobic attraction (HA) is believed to be one of the main driving forces for protein folding. Understanding its temperature dependence promises a deeper understanding of protein folding. Herein, we present an approach to investigate the HA with a combined experimental and simulation approach, which is complementary to previous studies on the temperature dependence of the solvation of small hydrophobic spherical particles. We determine the temperature dependence of the free-energy change and detachment length upon desorption of single polypeptides from hydrophobic substrates in aqueous environment. Both the atomic force microscopy (AFM) based experiments and the molecular dynamics (MD) simulations show only a weak dependence of the free energy change on temperature. In fact, depending on the substrate, we find a maximum or a minimum in the temperature-dependent free energy change, meaning that the entropy increases or decreases with temperature for different substrates. These observations are in contrast to the solvation of small hydrophobic particles and can be rationalized by a compensation mechanism between the various contributions to the desorption force. On the one hand this is reminiscent of the protein folding process, where large entropic and enthalpic contributions compensate each other to result in a small free energy difference between the folded and unfolded state. On the other hand, the protein folding process shows much stronger temperature dependence, pointing to a fundamental difference between protein folding and adsorption. Nevertheless such temperature dependent single molecule desorption studies open large possibilities to study equilibrium and non-equilibrium processes dominated by the hydrophobic attraction.
Collapse
Affiliation(s)
- Sandra Kienle
- Department of Physics (E22), IMETUM, CeNS, Technische Universität München, Boltzmannstr. 11, 85748 Garching, Germany
| | | | | | | | | |
Collapse
|