1
|
Suzuki R, Nagashima T, Kojima K, Hironishi R, Hirohata M, Ueta T, Murata T, Yamazaki T, Sudo Y, Takahashi H. Nuclear Magnetic Resonance Detection of Hydrogen Bond Network in a Proton Pump Rhodopsin RxR and Its Alteration during the Cyclic Photoreaction. J Am Chem Soc 2023. [PMID: 37410967 DOI: 10.1021/jacs.3c02833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Hydrogen bond formation and deformation are crucial for the structural construction and functional expression of biomolecules. However, direct observation of exchangeable hydrogens, especially for oxygen-bound hydrogens, relevant to hydrogen bonds is challenging for current structural analysis approaches. Using solution-state NMR spectroscopy, this study detected the functionally important exchangeable hydrogens (i.e., Y49-ηOH and Y178-ηOH) involved in the pentagonal hydrogen bond network in the active site of R. xylanophilus rhodopsin (RxR), which functions as a light-driven proton pump. Moreover, utilization of the original light-irradiation NMR approach allowed us to detect and characterize the late photointermediate state (i.e., O-state) of RxR and revealed that hydrogen bonds relevant to Y49 and Y178 are still maintained during the photointermediate state. In contrast, the hydrogen bond between W75-εNH and D205-γCOO- is strengthened and stabilizes the O-state.
Collapse
Affiliation(s)
- Rika Suzuki
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Toshio Nagashima
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| | - Keiichi Kojima
- Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Reika Hironishi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Masafumi Hirohata
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Tetsuya Ueta
- Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Takeshi Murata
- Graduate School of Science, Chiba University, Inage, Chiba 263-8522, Japan
| | - Toshio Yamazaki
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| | - Yuki Sudo
- Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Hideo Takahashi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
2
|
Akke M, Weininger U. NMR Studies of Aromatic Ring Flips to Probe Conformational Fluctuations in Proteins. J Phys Chem B 2023; 127:591-599. [PMID: 36640108 PMCID: PMC9884080 DOI: 10.1021/acs.jpcb.2c07258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/25/2022] [Indexed: 01/15/2023]
Abstract
Aromatic residues form a significant part of the protein core, where they make tight interactions with multiple surrounding side chains. Despite the dense packing of internal side chains, the aromatic rings of phenylalanine and tyrosine residues undergo 180° rotations, or flips, which are mediated by transient and large-scale "breathing" motions that generate sufficient void volume around the aromatic ring. Forty years after the seminal work by Wagner and Wüthrich, NMR studies of aromatic ring flips are now undergoing a renaissance as a powerful means of probing fundamental dynamic properties of proteins. Recent developments of improved NMR methods and isotope labeling schemes have enabled a number of advances in addressing the mechanisms and energetics of aromatic ring flips. The nature of the transition states associated with ring flips can be described by thermodynamic activation parameters, including the activation enthalpy, activation entropy, activation volume, and also the isothermal volume compressibility of activation. Consequently, it is of great interest to study how ring flip rate constants and activation parameters might vary with protein structure and external conditions like temperature and pressure. The field is beginning to gather such data for aromatic residues in a variety of environments, ranging from surface exposed to buried. In the future, the combination of solution and solid-state NMR spectroscopy together with molecular dynamics simulations and other computational approaches is likely to provide detailed information about the coupled dynamics of aromatic rings and neighboring residues. In this Perspective, we highlight recent developments and provide an outlook toward the future.
Collapse
Affiliation(s)
- Mikael Akke
- Division
of Biophysical Chemistry, Center for Molecular Protein Science, Department
of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Ulrich Weininger
- Institute
of Physics, Biophysics, Martin-Luther-University
Halle-Wittenberg, D-06129 Halle (Saale), Germany
| |
Collapse
|
3
|
Dreydoppel M, Akke M, Weininger U. Characterizing Fast Conformational Exchange of Aromatic Rings Using Residual Dipolar Couplings: Distinguishing Jumplike Flips from Other Exchange Mechanisms. J Phys Chem B 2022; 126:7950-7956. [PMID: 36180044 PMCID: PMC9574926 DOI: 10.1021/acs.jpcb.2c05097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Aromatic ring flips are a hallmark of protein dynamics.
They are
experimentally studied by NMR spectroscopy, where recent advances
have led to improved characterization across a wide range of time
scales. Results on different proteins have been interpreted as continuous
diffusive ring rotations or jumplike flips, leading to diverging views
of the protein interior as being fluidlike or solidlike, respectively.
It is challenging to distinguish between these mechanisms and other
types of conformational exchange because chemical-shift-mediated line
broadening provides only conclusive evidence for ring flips only if
the system can be moved from the slow- to intermediate/fast-exchange
regime. Moreover, whenever the chemical shift difference between the
two symmetry-related sites is close to zero, it is not generally possible
to determine the exchange time scale. Here we resolve these issues
by measuring residual dipolar coupling (RDC)-mediated exchange contributions
using NMR relaxation dispersion experiments on proteins dissolved
in dilute liquid crystalline media. Excellent agreement is found between
the experimental difference in RDC between the two symmetry-related
sites and the value calculated from high-resolution X-ray structures,
demonstrating that dynamics measured for F52 in the B1 domain of protein
G reports on distinct, jumplike flips rather than other types of conformational
exchange.
Collapse
Affiliation(s)
- Matthias Dreydoppel
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, D-06120Halle (Saale), Germany
| | - Mikael Akke
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, P.O. Box 124, SE-22100Lund, Sweden
| | - Ulrich Weininger
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, D-06120Halle (Saale), Germany
| |
Collapse
|
4
|
Dreydoppel M, Dorn B, Modig K, Akke M, Weininger U. Transition-State Compressibility and Activation Volume of Transient Protein Conformational Fluctuations. JACS AU 2021; 1:833-842. [PMID: 34467336 PMCID: PMC8395657 DOI: 10.1021/jacsau.1c00062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 06/13/2023]
Abstract
Proteins are dynamic entities that intermittently depart from their ground-state structures and undergo conformational transitions as a critical part of their functions. Central to understanding such transitions are the structural rearrangements along the connecting pathway, where the transition state plays a special role. Using NMR relaxation at variable temperature and pressure to measure aromatic ring flips inside a protein core, we obtain information on the structure and thermodynamics of the transition state. We show that the isothermal compressibility coefficient of the transition state is similar to that of short-chain hydrocarbon liquids, implying extensive local unfolding of the protein. Our results further indicate that the required local volume expansions of the protein can occur not only with a net positive activation volume of the protein, as expected from previous studies, but also with zero activation volume by compaction of remote void volume, when averaged over the ensemble of states.
Collapse
Affiliation(s)
- Matthias Dreydoppel
- Institute
of Physics, Biophysics, Martin-Luther-University
Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Britta Dorn
- Institute
of Physics, Biophysics, Martin-Luther-University
Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Kristofer Modig
- Division
of Biophysical Chemistry, Center for Molecular Protein Science, Department
of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Mikael Akke
- Division
of Biophysical Chemistry, Center for Molecular Protein Science, Department
of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Ulrich Weininger
- Institute
of Physics, Biophysics, Martin-Luther-University
Halle-Wittenberg, D-06120 Halle (Saale), Germany
| |
Collapse
|
5
|
Gimenez D, Phelan A, Murphy CD, Cobb SL. 19F NMR as a tool in chemical biology. Beilstein J Org Chem 2021; 17:293-318. [PMID: 33564338 PMCID: PMC7849273 DOI: 10.3762/bjoc.17.28] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
We previously reviewed the use of 19F NMR in the broad field of chemical biology [Cobb, S. L.; Murphy, C. D. J. Fluorine Chem. 2009, 130, 132-140] and present here a summary of the literature from the last decade that has the technique as the central method of analysis. The topics covered include the synthesis of new fluorinated probes and their incorporation into macromolecules, the application of 19F NMR to monitor protein-protein interactions, protein-ligand interactions, physiologically relevant ions and in the structural analysis of proteins and nucleic acids. The continued relevance of the technique to investigate biosynthesis and biodegradation of fluorinated organic compounds is also described.
Collapse
Affiliation(s)
- Diana Gimenez
- Department of Chemistry, Durham University, South Road, Durham, DH13LE, UK
| | - Aoife Phelan
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac D Murphy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Steven L Cobb
- Department of Chemistry, Durham University, South Road, Durham, DH13LE, UK
| |
Collapse
|
6
|
Yu B, Pletka CC, Iwahara J. NMR Observation of Intermolecular Hydrogen Bonds between Protein Tyrosine Side-Chain OH and DNA Phosphate Groups. J Phys Chem B 2020; 124:1065-1070. [PMID: 31958014 PMCID: PMC7021563 DOI: 10.1021/acs.jpcb.9b10987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hydrogen bonds between protein side-chain hydroxyl (OH) and phosphate groups are one of the most common types of intermolecular hydrogen bonds in protein-DNA/RNA complexes. Using NMR spectroscopy, we identified and characterized the hydrogen bonds between tyrosine side-chain OH and DNA phosphate groups in a protein-DNA complex. These OH groups exhibited relatively slow hydrogen-exchange rates and sizable scalar couplings between hydroxyl 1H and DNA phosphate 31P nuclei across the hydrogen bonds. Information about intermolecular hydrogen bonds facilitates investigations of the DNA/RNA recognition by the protein.
Collapse
Affiliation(s)
- Binhan Yu
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| | - Channing C. Pletka
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| | - Junji Iwahara
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| |
Collapse
|
7
|
A synergistic effect of phosphate, pH and Phe159 substitution on the formycin A association to the E. coli purine nucleoside phosphorylase. Biochimie 2018; 148:80-86. [DOI: 10.1016/j.biochi.2018.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/22/2018] [Indexed: 11/22/2022]
|
8
|
Oktaviani NA, Pool TJ, Yoshimura Y, Kamikubo H, Scheek RM, Kataoka M, Mulder FAA. Active-Site pKa Determination for Photoactive Yellow Protein Rationalizes Slow Ground-State Recovery. Biophys J 2017; 112:2109-2116. [PMID: 28538148 DOI: 10.1016/j.bpj.2017.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/28/2017] [Accepted: 04/10/2017] [Indexed: 11/16/2022] Open
Abstract
The ability to avoid blue-light radiation is crucial for bacteria to survive. In Halorhodospira halophila, the putative receptor for this response is known as photoactive yellow protein (PYP). Its response to blue light is mediated by changes in the optical properties of the chromophore para-coumaric acid (pCA) in the protein active site. PYP displays photocycle kinetics with a strong pH dependence for ground-state recovery, which has remained enigmatic. To resolve this problem, a comprehensive pKa determination of the active-site residues of PYP is required. Herein, we show that Glu-46 stays protonated from pH 3.4 to pH 11.4 in the ground (pG) state. This conclusion is supported by the observed hydrogen-bonded protons between Glu-46 and pCA and Tyr-42 and pCA, which are persistent over the entire pH range. Our experimental results show that none of the active-site residues of PYP undergo pH-induced changes in the pG state. Ineluctably, the pH dependence of pG recovery is linked to conformational change that is dependent upon the population of the relevant protonation state of Glu-46 and the pCA chromophore in the excited state, collaterally explaining why pG recovery is slow.
Collapse
Affiliation(s)
- Nur Alia Oktaviani
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh, Groningen, the Netherlands
| | - Trijntje J Pool
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh, Groningen, the Netherlands
| | - Yuichi Yoshimura
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Hironari Kamikubo
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Ruud M Scheek
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh, Groningen, the Netherlands
| | - Mikio Kataoka
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Frans A A Mulder
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh, Groningen, the Netherlands; Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
9
|
Oyala PH, Ravichandran KR, Funk MA, Stucky PA, Stich TA, Drennan CL, Britt RD, Stubbe J. Biophysical Characterization of Fluorotyrosine Probes Site-Specifically Incorporated into Enzymes: E. coli Ribonucleotide Reductase As an Example. J Am Chem Soc 2016; 138:7951-64. [PMID: 27276098 PMCID: PMC4929525 DOI: 10.1021/jacs.6b03605] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Fluorinated tyrosines
(FnY’s, n = 2
and 3) have been site-specifically incorporated into E. coli class Ia ribonucleotide reductase (RNR) using the
recently evolved M. jannaschii Y-tRNA synthetase/tRNA
pair. Class Ia RNRs require four redox active Y’s, a stable
Y radical (Y·) in the β subunit (position 122 in E. coli), and three transiently oxidized Y’s (356
in β and 731 and 730 in α) to initiate the radical-dependent
nucleotide reduction process. FnY (3,5;
2,3; 2,3,5; and 2,3,6) incorporation in place of Y122-β
and the X-ray structures of each resulting β with a diferric
cluster are reported and compared with wt-β2 crystallized under
the same conditions. The essential diferric-FnY· cofactor is self-assembled from apo FnY-β2, Fe2+, and O2 to produce ∼1
Y·/β2 and ∼3 Fe3+/β2. The FnY· are stable and active in nucleotide
reduction with activities that vary from 5% to 85% that of wt-β2.
Each FnY·-β2 has been characterized
by 9 and 130 GHz electron paramagnetic resonance and high-field electron
nuclear double resonance spectroscopies. The hyperfine interactions
associated with the 19F nucleus provide unique signatures
of each FnY· that are readily distinguishable
from unlabeled Y·’s. The variability of the abiotic FnY pKa’s
(6.4 to 7.8) and reduction potentials (−30 to +130 mV relative
to Y at pH 7.5) provide probes of enzymatic reactions proposed to
involve Y·’s in catalysis and to investigate the importance
and identity of hopping Y·’s within redox active proteins
proposed to protect them from uncoupled radical chemistry.
Collapse
Affiliation(s)
- Paul H Oyala
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | | | | | - Paul A Stucky
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Troy A Stich
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Catherine L Drennan
- Howard Hughes Medical Institute, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | | |
Collapse
|
10
|
Yang CJ, Takeda M, Terauchi T, Jee J, Kainosho M. Differential Large-Amplitude Breathing Motions in the Interface of FKBP12–Drug Complexes. Biochemistry 2015; 54:6983-95. [DOI: 10.1021/acs.biochem.5b00820] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Chun-Jiun Yang
- Department
of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 minami-ohsawa, Hachioji,
Tokyo 192-0397, Japan
| | - Mitsuhiro Takeda
- Structural
Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya 464-8602, Japan
| | - Tsutomu Terauchi
- Department
of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 minami-ohsawa, Hachioji,
Tokyo 192-0397, Japan
| | - JunGoo Jee
- Department
of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 minami-ohsawa, Hachioji,
Tokyo 192-0397, Japan
| | - Masatsune Kainosho
- Department
of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 minami-ohsawa, Hachioji,
Tokyo 192-0397, Japan
- Structural
Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
11
|
Affiliation(s)
- Mathias A.S. Hass
- Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands
| | - Frans A.A. Mulder
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark;
| |
Collapse
|
12
|
Joint neutron crystallographic and NMR solution studies of Tyr residue ionization and hydrogen bonding: Implications for enzyme-mediated proton transfer. Proc Natl Acad Sci U S A 2015; 112:5673-8. [PMID: 25902526 DOI: 10.1073/pnas.1502255112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human carbonic anhydrase II (HCA II) uses a Zn-bound OH(-)/H2O mechanism to catalyze the reversible hydration of CO2. This catalysis also involves a separate proton transfer step, mediated by an ordered solvent network coordinated by hydrophilic residues. One of these residues, Tyr7, was previously shown to be deprotonated in the neutron crystal structure at pH 10. This observation indicated that Tyr7 has a perturbed pKa compared with free tyrosine. To further probe the pKa of this residue, NMR spectroscopic measurements of [(13)C]Tyr-labeled holo HCA II (with active-site Zn present) were preformed to titrate all Tyr residues between pH 5.4-11.0. In addition, neutron studies of apo HCA II (with Zn removed from the active site) at pH 7.5 and holo HCA II at pH 6 were conducted. This detailed interrogation of tyrosines in HCA II by NMR and neutron crystallography revealed a significantly lowered pKa of Tyr7 and how pH and Tyr proximity to Zn affect hydrogen-bonding interactions.
Collapse
|
13
|
Platzer G, Okon M, McIntosh LP. pH-dependent random coil (1)H, (13)C, and (15)N chemical shifts of the ionizable amino acids: a guide for protein pK a measurements. JOURNAL OF BIOMOLECULAR NMR 2014; 60:109-129. [PMID: 25239571 DOI: 10.1007/s10858-014-9862-y] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/09/2014] [Indexed: 06/03/2023]
Abstract
The pK a values and charge states of ionizable residues in polypeptides and proteins are frequently determined via NMR-monitored pH titrations. To aid the interpretation of the resulting titration data, we have measured the pH-dependent chemical shifts of nearly all the (1)H, (13)C, and (15)N nuclei in the seven common ionizable amino acids (X = Asp, Glu, His, Cys, Tyr, Lys, and Arg) within the context of a blocked tripeptide, acetyl-Gly-X-Gly-amide. Alanine amide and N-acetyl alanine were used as models of the N- and C-termini, respectively. Together, this study provides an essentially complete set of pH-dependent intra-residue and nearest-neighbor reference chemical shifts to help guide protein pK a measurements. These data should also facilitate pH-dependent corrections in algorithms used to predict the chemical shifts of random coil polypeptides. In parallel, deuterium isotope shifts for the side chain (15)N nuclei of His, Lys, and Arg in their positively-charged and neutral states were also measured. Along with previously published results for Asp, Glu, Cys, and Tyr, these deuterium isotope shifts can provide complementary experimental evidence for defining the ionization states of protein residues.
Collapse
Affiliation(s)
- Gerald Platzer
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | | | | |
Collapse
|
14
|
Oltrogge LM, Wang Q, Boxer SG. Ground-state proton transfer kinetics in green fluorescent protein. Biochemistry 2014; 53:5947-57. [PMID: 25184668 PMCID: PMC4172208 DOI: 10.1021/bi500147n] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Proton
transfer plays an important role in the optical properties
of green fluorescent protein (GFP). While much is known about excited-state
proton transfer reactions (ESPT) in GFP occurring on ultrafast time
scales, comparatively little is understood about the factors governing
the rates and pathways of ground-state proton transfer. We have utilized
a specific isotopic labeling strategy in combination with one-dimensional 13C nuclear magnetic resonance (NMR) spectroscopy to install
and monitor a 13C directly adjacent to the GFP chromophore
ionization site. The chemical shift of this probe is highly sensitive
to the protonation state of the chromophore, and the resulting spectra
reflect the thermodynamics and kinetics of the proton transfer in
the NMR line shapes. This information is complemented by time-resolved
NMR, fluorescence correlation spectroscopy, and steady-state absorbance
and fluorescence measurements to provide a picture of chromophore
ionization reactions spanning a wide time domain. Our findings indicate
that proton transfer in GFP is described well by a two-site model
in which the chromophore is energetically coupled to a secondary site,
likely the terminal proton acceptor of ESPT, Glu222. Additionally,
experiments on a selection of GFP circular permutants suggest an important
role played by the structural dynamics of the seventh β-strand
in gating proton transfer from bulk solution to the buried chromophore.
Collapse
Affiliation(s)
- Luke M Oltrogge
- Department of Chemistry, Stanford University , Stanford, California 94305-5012, United States
| | | | | |
Collapse
|
15
|
Weininger U, Modig K, Akke M. Ring Flips Revisited: 13C Relaxation Dispersion Measurements of Aromatic Side Chain Dynamics and Activation Barriers in Basic Pancreatic Trypsin Inhibitor. Biochemistry 2014; 53:4519-25. [DOI: 10.1021/bi500462k] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ulrich Weininger
- Department of Biophysical
Chemistry, Center for Molecular Protein Science, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Kristofer Modig
- Department of Biophysical
Chemistry, Center for Molecular Protein Science, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Mikael Akke
- Department of Biophysical
Chemistry, Center for Molecular Protein Science, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
16
|
Takeda M, Miyanoiri Y, Terauchi T, Yang CJ, Kainosho M. Use of H/D isotope effects to gather information about hydrogen bonding and hydrogen exchange rates. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 241:148-154. [PMID: 24656087 DOI: 10.1016/j.jmr.2013.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/02/2013] [Accepted: 10/04/2013] [Indexed: 06/03/2023]
Abstract
Polar side-chains in proteins play important roles in forming and maintaining three-dimensional structures, and thus participate in various biological functions. Until recently, most protein NMR studies have focused on the non-exchangeable protons of amino acid residues. The exchangeable protons attached to polar groups, such as hydroxyl (OH), sulfhydryl (SH), and amino (NH2) groups, have mostly been ignored, because in many cases these hydrogen atoms exchange too quickly with water protons, making NMR observations impractical. However, in certain environments, such as deep within the hydrophobic interior of a protein, or in a strong hydrogen bond to other polar groups or interacting ligands, the protons attached to polar groups may exhibit slow hydrogen exchange rates and thus become NMR accessible. To explore the structural and biological implications of the interactions involving polar side-chains, we have developed versatile NMR methods to detect such cases by observing the line shapes of (13)C NMR signals near the polar groups, which are affected by deuterium-proton isotope shifts in a mixture of H2O and D2O. These methods allow the detection of polar side-chains with slow hydrogen-deuterium exchange rates, and therefore provide opportunities to retrieve information about the polar side-chains, which might otherwise be overlooked by conventional NMR experiments. Future prospects of applications using deuterium-proton isotope shifts to retrieve missing structural and dynamic information of proteins are discussed.
Collapse
Affiliation(s)
- Mitsuhiro Takeda
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yohei Miyanoiri
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Tsutomu Terauchi
- Center for Priority Areas, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji 192-0397, Japan; SAIL Technologies Co., Inc., 1-40 Suehiro-cho 1-chome, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Chun-Jiun Yang
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Masatsune Kainosho
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan; Center for Priority Areas, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji 192-0397, Japan.
| |
Collapse
|
17
|
Borkovec M, Koper GJM, Spiess B. The intrinsic view of ionization equilibria of polyprotic molecules. NEW J CHEM 2014. [DOI: 10.1039/c4nj00655k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The described intrinsic approach massively reduces the parameter number to describe microequilibria. The resulting intrinsic parameters yield insight into the protonation of polyprotic molecules.
Collapse
Affiliation(s)
- Michal Borkovec
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- 1205 Geneva, Switzerland
| | - Ger J. M. Koper
- Department of Chemical Engineering
- Delft University of Technology
- 2628 BL Delft, The Netherlands
| | - Bernard Spiess
- Laboratoire d'Innovation Thérapeutique
- UMR 7200 CNRS and Université de Strasbourg
- Faculty of Pharmacy
- 67401 Illkirch Cedex, France
| |
Collapse
|
18
|
Brockerman JA, Okon M, McIntosh LP. Detection and characterization of serine and threonine hydroxyl protons in Bacillus circulans xylanase by NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2014; 58:17-25. [PMID: 24306180 DOI: 10.1007/s10858-013-9799-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/26/2013] [Indexed: 06/02/2023]
Abstract
Hydroxyl protons on serine and threonine residues are not well characterized in protein structures determined by both NMR spectroscopy and X-ray crystallography. In the case of NMR spectroscopy, this is in large part because hydroxyl proton signals are usually hidden under crowded regions of (1)H-NMR spectra and remain undetected by conventional heteronuclear correlation approaches that rely on strong one-bond (1)H-(15)N or (1)H-(13)C couplings. However, by filtering against protons directly bonded to (13)C or (15)N nuclei, signals from slowly-exchanging hydroxyls can be observed in the (1)H-NMR spectrum of a uniformly (13)C/(15)N-labeled protein. Here we demonstrate the use of a simple selective labeling scheme in combination with long-range heteronuclear scalar correlation experiments as an easy and relatively inexpensive way to detect and assign these hydroxyl proton signals. Using auxtrophic Escherichia coli strains, we produced Bacillus circulans xylanase (BcX) labeled with (13)C/(15)N-serine or (13)C/(15)N-threonine. Signals from two serine and three threonine hydroxyls in these protein samples were readily observed via (3)JC-OH couplings in long-range (13)C-HSQC spectra. These scalar couplings (~5-7 Hz) were measured in a sample of uniformly (13)C/(15)N-labeled BcX using a quantitative (13)C/(15)N-filtered spin-echo difference experiment. In a similar approach, the threonine and serine hydroxyl hydrogen exchange kinetics were measured using a (13)C/(15)N-filtered CLEANEX-PM pulse sequence. Collectively, these experiments provide insights into the structural and dynamic properties of several serine and threonine hydroxyls within this model protein.
Collapse
Affiliation(s)
- Jacob A Brockerman
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | | | | |
Collapse
|
19
|
Kitevski-LeBlanc JL, Hoang J, Thach W, Larda ST, Prosser RS. 19F NMR Studies of a Desolvated Near-Native Protein Folding Intermediate. Biochemistry 2013; 52:5780-9. [DOI: 10.1021/bi4010057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Julianne L. Kitevski-LeBlanc
- Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Road North,
Mississauga, Ontario L5L 1C6, Canada
| | - Joshua Hoang
- Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Road North,
Mississauga, Ontario L5L 1C6, Canada
| | - William Thach
- Department of Biochemistry, University of Toronto, 1 King’s College Circle,
Toronto, Ontario M5S 1A8, Canada
| | - Sacha Thierry Larda
- Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Road North,
Mississauga, Ontario L5L 1C6, Canada
| | - R. Scott Prosser
- Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Road North,
Mississauga, Ontario L5L 1C6, Canada
- Department of Biochemistry, University of Toronto, 1 King’s College Circle,
Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
20
|
Ludwiczek ML, D’Angelo I, Yalloway GN, Brockerman JA, Okon M, Nielsen JE, Strynadka NCJ, Withers SG, McIntosh LP. Strategies for Modulating the pH-Dependent Activity of a Family 11 Glycoside Hydrolase. Biochemistry 2013; 52:3138-56. [DOI: 10.1021/bi400034m] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Martin L. Ludwiczek
- Department of Biochemistry and
Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Chemistry, University of British Columbia, Vancouver, British
Columbia, Canada V6T 1Z1
- Michael Smith Laboratories, University of British Columbia, Vancouver, British
Columbia, Canada V6T 1Z4
| | - Igor D’Angelo
- Department of Biochemistry and
Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Gary N. Yalloway
- Department of Biochemistry and
Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Chemistry, University of British Columbia, Vancouver, British
Columbia, Canada V6T 1Z1
| | - Jacob A. Brockerman
- Department of Biochemistry and
Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Chemistry, University of British Columbia, Vancouver, British
Columbia, Canada V6T 1Z1
- Michael Smith Laboratories, University of British Columbia, Vancouver, British
Columbia, Canada V6T 1Z4
| | - Mark Okon
- Department of Biochemistry and
Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Chemistry, University of British Columbia, Vancouver, British
Columbia, Canada V6T 1Z1
- Michael Smith Laboratories, University of British Columbia, Vancouver, British
Columbia, Canada V6T 1Z4
| | - Jens E. Nielsen
- School
of Biomolecular and Biomedical
Science, Centre for Synthesis and Chemical Biology, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Natalie C. J. Strynadka
- Department of Biochemistry and
Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Stephen G. Withers
- Department of Biochemistry and
Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Chemistry, University of British Columbia, Vancouver, British
Columbia, Canada V6T 1Z1
- Centre for High-throughput Biology, University of British Columbia, Vancouver, British
Columbia, Canada V6T 1Z4
| | - Lawrence P. McIntosh
- Department of Biochemistry and
Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Chemistry, University of British Columbia, Vancouver, British
Columbia, Canada V6T 1Z1
- Michael Smith Laboratories, University of British Columbia, Vancouver, British
Columbia, Canada V6T 1Z4
| |
Collapse
|
21
|
Pond MP, Wenke BB, Preimesberger MR, Rice SL, Lecomte JTJ. 3-Fluorotyrosine as a complementary probe of hemoglobin structure and dynamics: a (19)F-NMR study of Synechococcus sp. PCC 7002 GlbN. Chem Biodivers 2013; 9:1703-17. [PMID: 22976963 DOI: 10.1002/cbdv.201100448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The hemoglobin from the cyanobacterium Synechococcus sp. PCC 7002 (GlbN) contains three tyrosines (Tyr5, Tyr22, and Tyr53), each of which undergoes a structural rearrangement when the protein binds an exogenous ligand such as cyanide. We explored the use of 3-fluorotyrosine and (19)F-NMR spectroscopy for the characterization of GlbN. Assignment of (19)F resonances in fluorinated GlbN (GlbN*) was achieved with individual Tyr5Phe and Tyr53Phe replacements. We observed marked variations in chemical shift and linewidth reflecting the dependence of structural and dynamic properties on oxidation state, ligation state, and covalent attachment of the heme group. The isoelectronic complexes of ferric GlbN* with cyanide and ferrous GlbN* with carbon monoxide gave contrasting spectra, the latter exhibiting heterogeneity and enhanced internal motions on a microsecond-to-millisecond time scale. The strength of the H-bond network involving Tyr22 (B10) and bound cyanide was tested at high pH. 3-Fluorotyrosine at position 22 had a pK(a) value at least 3 units higher than its intrinsic value, 8.5. In addition, evidence was found for long-range communication among the tyrosine sites. These observations demonstrated the utility of the 3-fluorotyrosine approach to gain insight in hemoglobin properties.
Collapse
Affiliation(s)
- Matthew P Pond
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
22
|
Oktaviani NA, Pool TJ, Kamikubo H, Slager J, Scheek RM, Kataoka M, Mulder FAA. Comprehensive determination of protein tyrosine pKa values for photoactive yellow protein using indirect 13C NMR spectroscopy. Biophys J 2012; 102:579-86. [PMID: 22325281 DOI: 10.1016/j.bpj.2011.12.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/23/2011] [Accepted: 12/05/2011] [Indexed: 10/14/2022] Open
Abstract
Upon blue-light irradiation, the bacterium Halorhodospira halophila is able to modulate the activity of its flagellar motor and thereby evade potentially harmful UV radiation. The 14 kDa soluble cytosolic photoactive yellow protein (PYP) is believed to be the primary mediator of this photophobic response, and yields a UV/Vis absorption spectrum that closely matches the bacterium's motility spectrum. In the electronic ground state, the para-coumaric acid (pCA) chromophore of PYP is negatively charged and forms two short hydrogen bonds to the side chains of Glu-46 and Tyr-42. The resulting acid triad is central to the marked pH dependence of the optical-absorption relaxation kinetics of PYP. Here, we describe an NMR approach to sequence-specifically follow all tyrosine side-chain protonation states in PYP from pH 3.41 to 11.24. The indirect observation of the nonprotonated (13)C(γ) resonances in sensitive and well-resolved two-dimensional (13)C-(1)H spectra proved to be pivotal in this effort, as observation of other ring-system resonances was hampered by spectral congestion and line-broadening due to ring flips. We observe three classes of tyrosine residues in PYP that exhibit very different pK(a) values depending on whether the phenolic side chain is solvent-exposed, buried, or hydrogen-bonded. In particular, our data show that Tyr-42 remains fully protonated in the pH range of 3.41-11.24, and that pH-induced changes observed in the photocycle kinetics of PYP cannot be caused by changes in the charge state of Tyr-42. It is therefore very unlikely that the pCA chromophore undergoes changes in its electrostatic interactions in the electronic ground state.
Collapse
Affiliation(s)
- Nur Alia Oktaviani
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|