1
|
Fuglestad B, Stetz MA, Belnavis Z, Wand AJ. Solution NMR investigation of the response of the lactose repressor core domain dimer to hydrostatic pressure. Biophys Chem 2017; 231:39-44. [PMID: 28249763 DOI: 10.1016/j.bpc.2017.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 11/19/2022]
Abstract
Previous investigations of the sensitivity of the lac repressor to high-hydrostatic pressure have led to varying conclusions. Here high-pressure solution NMR spectroscopy is used to provide an atomic level view of the pressure induced structural transition of the lactose repressor regulatory domain (LacI* RD) bound to the ligand IPTG. As the pressure is raised from ambient to 3kbar the native state of the protein is converted to a partially unfolded form. Estimates of rotational correlation times using transverse optimized relaxation indicates that a monomeric state is never reached and that the predominate form of the LacI* RD is dimeric throughout this pressure change. Spectral analysis suggests that the pressure-induced transition is localized and is associated with a volume change of approximately -115mlmol-1 and an average pressure dependent change in compressibility of approximately 30mlmol-1kbar-1. In addition, a subset of resonances emerge at high-pressures indicating the presence of a non-native but folded alternate state.
Collapse
Affiliation(s)
- Brian Fuglestad
- Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, 905 Stellar-Chance Laboratories, 422 Curie Blvd, Philadelphia, PA 19104-6059, USA
| | - Matthew A Stetz
- Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, 905 Stellar-Chance Laboratories, 422 Curie Blvd, Philadelphia, PA 19104-6059, USA
| | - Zachary Belnavis
- Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, 905 Stellar-Chance Laboratories, 422 Curie Blvd, Philadelphia, PA 19104-6059, USA
| | - A Joshua Wand
- Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, 905 Stellar-Chance Laboratories, 422 Curie Blvd, Philadelphia, PA 19104-6059, USA.
| |
Collapse
|
2
|
Role of cavities and hydration in the pressure unfolding of T4 lysozyme. Proc Natl Acad Sci U S A 2014; 111:13846-51. [PMID: 25201963 DOI: 10.1073/pnas.1410655111] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is well known that high hydrostatic pressures can induce the unfolding of proteins. The physical underpinnings of this phenomenon have been investigated extensively but remain controversial. Changes in solvation energetics have been commonly proposed as a driving force for pressure-induced unfolding. Recently, the elimination of void volumes in the native folded state has been argued to be the principal determinant. Here we use the cavity-containing L99A mutant of T4 lysozyme to examine the pressure-induced destabilization of this multidomain protein by using solution NMR spectroscopy. The cavity-containing C-terminal domain completely unfolds at moderate pressures, whereas the N-terminal domain remains largely structured to pressures as high as 2.5 kbar. The sensitivity to pressure is suppressed by the binding of benzene to the hydrophobic cavity. These results contrast to the pseudo-WT protein, which has a residual cavity volume very similar to that of the L99A-benzene complex but shows extensive subglobal reorganizations with pressure. Encapsulation of the L99A mutant in the aqueous nanoscale core of a reverse micelle is used to examine the hydration of the hydrophobic cavity. The confined space effect of encapsulation suppresses the pressure-induced unfolding transition and allows observation of the filling of the cavity with water at elevated pressures. This indicates that hydration of the hydrophobic cavity is more energetically unfavorable than global unfolding. Overall, these observations point to a range of cooperativity and energetics within the T4 lysozyme molecule and illuminate the fact that small changes in physical parameters can significantly alter the pressure sensitivity of proteins.
Collapse
|
3
|
Kumar D, Raikwal N, Shukla VK, Pandey H, Arora A, Guleria A. Pseudo 5D HN(C)N experiment to facilitate the assignment of backbone resonances in proteins exhibiting high backbone shift degeneracy. Chem Phys 2014. [DOI: 10.1016/j.chemphys.2014.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Dodevski I, Nucci NV, Valentine KG, Sidhu GK, O'Brien ES, Pardi A, Wand AJ. Optimized reverse micelle surfactant system for high-resolution NMR spectroscopy of encapsulated proteins and nucleic acids dissolved in low viscosity fluids. J Am Chem Soc 2014; 136:3465-74. [PMID: 24495164 PMCID: PMC3969725 DOI: 10.1021/ja410716w] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
An optimized reverse micelle surfactant
system has been developed
for solution nuclear magnetic resonance studies of encapsulated proteins
and nucleic acids dissolved in low viscosity fluids. Comprising the
nonionic 1-decanoyl-rac-glycerol and the zwitterionic
lauryldimethylamine-N-oxide (10MAG/LDAO), this mixture
is shown to efficiently encapsulate a diverse set of proteins and
nucleic acids. Chemical shift analyses of these systems show that
high structural fidelity is achieved upon encapsulation. The 10MAG/LDAO
surfactant system reduces the molecular reorientation time for encapsulated
macromolecules larger than ∼20 kDa leading to improved overall
NMR performance. The 10MAG/LDAO system can also be used for solution
NMR studies of lipid-modified proteins. New and efficient strategies
for optimization of encapsulation conditions are described. 10MAG/LDAO
performs well in both the low viscosity pentane and ultralow viscosity
liquid ethane and therefore will serve as a general surfactant system
for initiating solution NMR studies of proteins and nucleic acids.
Collapse
Affiliation(s)
- Igor Dodevski
- Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6059
| | | | | | | | | | | | | |
Collapse
|
5
|
Valentine K, Mathies G, Bédard S, Nucci NV, Dodevski I, Stetz MA, Can TV, Griffin RG, Wand AJ. Reverse micelles as a platform for dynamic nuclear polarization in solution NMR of proteins. J Am Chem Soc 2014; 136:2800-7. [PMID: 24456213 PMCID: PMC3955360 DOI: 10.1021/ja4107176] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Indexed: 02/06/2023]
Abstract
Despite tremendous advances in recent years, solution NMR remains fundamentally restricted due to its inherent insensitivity. Dynamic nuclear polarization (DNP) potentially offers significant improvements in this respect. The basic DNP strategy is to irradiate the EPR transitions of a stable radical and transfer this nonequilibrium polarization to the hydrogen spins of water, which will in turn transfer polarization to the hydrogens of the macromolecule. Unfortunately, these EPR transitions lie in the microwave range of the electromagnetic spectrum where bulk water absorbs strongly, often resulting in catastrophic heating. Furthermore, the residence times of water on the surface of the protein in bulk solution are generally too short for efficient transfer of polarization. Here we take advantage of the properties of solutions of encapsulated proteins dissolved in low viscosity solvents to implement DNP in liquids. Such samples are largely transparent to the microwave frequencies required and thereby avoid significant heating. Nitroxide radicals are introduced into the reverse micelle system in three ways: attached to the protein, embedded in the reverse micelle shell, and free in the aqueous core. Significant enhancements of the water resonance ranging up to ∼-93 at 0.35 T were observed. We also find that the hydration properties of encapsulated proteins allow for efficient polarization transfer from water to the protein. These and other observations suggest that merging reverse micelle encapsulation technology with DNP offers a route to a significant increase in the sensitivity of solution NMR spectroscopy of proteins and other biomolecules.
Collapse
Affiliation(s)
- Kathleen
G. Valentine
- Johnson
Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| | - Guinevere Mathies
- Francis
Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Sabrina Bédard
- Johnson
Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| | - Nathaniel V. Nucci
- Johnson
Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| | - Igor Dodevski
- Johnson
Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| | - Matthew A. Stetz
- Johnson
Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| | - Thach V. Can
- Francis
Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Robert G. Griffin
- Francis
Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - A. Joshua Wand
- Johnson
Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| |
Collapse
|
6
|
Marques BS, Nucci NV, Dodevski I, Wang KWC, Athanasoula EA, Jorge C, Wand AJ. Measurement and control of pH in the aqueous interior of reverse micelles. J Phys Chem B 2014; 118:2020-31. [PMID: 24506449 PMCID: PMC3983379 DOI: 10.1021/jp4103349] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
The
encapsulation of proteins and nucleic acids within the nanoscale
water core of reverse micelles has been used for over 3 decades as
a vehicle for a wide range of investigations including enzymology,
the physical chemistry of confined spaces, protein and nucleic acid
structural biology, and drug development and delivery. Unfortunately,
the static and dynamical aspects of the distribution of water in solutions
of reverse micelles complicate the measurement and interpretation
of fundamental parameters such as pH. This is a severe disadvantage
in the context of (bio)chemical reactions and protein structure and
function, which are generally highly sensitive to pH. There is a need
to more fully characterize and control the effective pH of the reverse
micelle water core. The buffering effect of titratable head groups
of the reverse micelle surfactants is found to often be the dominant
variable defining the pH of the water core. Methods for measuring
the pH of the reverse micelle aqueous interior using one-dimensional 1H and two-dimensional heteronuclear NMR spectroscopy are described.
Strategies for setting the effective pH of the reverse micelle water
core are demonstrated. The exquisite sensitivity of encapsulated proteins
to the surfactant, water content, and pH of the reverse micelle is
also addressed. These results highlight the importance of assessing
the structural fidelity of the encapsulated protein using multidimensional
NMR before embarking upon a detailed structural and biophysical characterization.
Collapse
Affiliation(s)
- Bryan S Marques
- Graduate Group in Biochemistry and Molecular Biophysics and Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania 19104-6059, United States
| | | | | | | | | | | | | |
Collapse
|
7
|
Lee W, Yu W, Kim S, Chang I, Lee W, Markley JL. PACSY, a relational database management system for protein structure and chemical shift analysis. JOURNAL OF BIOMOLECULAR NMR 2012; 54:169-79. [PMID: 22903636 PMCID: PMC3542970 DOI: 10.1007/s10858-012-9660-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 08/08/2012] [Indexed: 05/05/2023]
Abstract
PACSY (Protein structure And Chemical Shift NMR spectroscopY) is a relational database management system that integrates information from the Protein Data Bank, the Biological Magnetic Resonance Data Bank, and the Structural Classification of Proteins database. PACSY provides three-dimensional coordinates and chemical shifts of atoms along with derived information such as torsion angles, solvent accessible surface areas, and hydrophobicity scales. PACSY consists of six relational table types linked to one another for coherence by key identification numbers. Database queries are enabled by advanced search functions supported by an RDBMS server such as MySQL or PostgreSQL. PACSY enables users to search for combinations of information from different database sources in support of their research. Two software packages, PACSY Maker for database creation and PACSY Analyzer for database analysis, are available from http://pacsy.nmrfam.wisc.edu.
Collapse
Affiliation(s)
- Woonghee Lee
- National Magnetic Resonance Facility at Madison, and Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA. Structural Biochemistry and Molecular Biophysics Laboratory, Department of Biochemistry, Yonsei University, Seoul 120-749, Korea
| | - Wookyung Yu
- Department of Physics, Center for Proteome Biophysics, Pusan National University, Busan 609-735, Korea
| | - Suhkmann Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 609-735, Korea
| | - Iksoo Chang
- Department of Physics, Center for Proteome Biophysics, Pusan National University, Busan 609-735, Korea
| | - Weontae Lee
- Structural Biochemistry and Molecular Biophysics Laboratory, Department of Biochemistry, Yonsei University, Seoul 120-749, Korea
| | - John L. Markley
- National Magnetic Resonance Facility at Madison, and Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|