1
|
Kusunoki H, Sakamoto T, Kobayashi N, Kohno T, Wakamatsu K, Nagata T. Structural Insights into the Interaction between the C-Terminal-Deleted BH3-like Motif Peptide of Hepatitis B Virus X Protein and Bcl-x L. Biochemistry 2024; 63:632-643. [PMID: 38377677 DOI: 10.1021/acs.biochem.3c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Hepatitis B virus X protein (HBx) plays a crucial role in the development of hepatocellular carcinoma (HCC) associated with hepatitis B virus (HBV) infection. The full-length HBx protein interacts with Bcl-xL and is involved in the HBV replication and cell death processes. The three hydrophobic residues Trp120, Leu123, and Ile127 of the HBx BH3-like motif are essential for the Bcl-xL-binding. On the other hand, various lengths of C-terminal-truncated HBx mutants are frequently detected in HCC tissues, and these mutants, rather than the full-length HBx, appear to be responsible for HCC development. Notably, the region spanning residues 1-120 of HBx [HBx(1 and 120)] has been strongly associated with an increased risk of HCC development. However, the mode of interaction between HBx(1-120) and Bcl-xL remains unclear. HBx(1-120) possesses only Trp120 among the three hydrophobic residues essential for the Bcl-xL-binding. To elucidate this interaction mode, we employed a C-terminal-deleted HBx BH3-like motif peptide composed of residues 101-120. Here, we present the NMR complex structure of Bcl-xL and HBx(101-120). Our results demonstrate that HBx(101-120) binds to Bcl-xL in a weaker manner. Considering the high expression of Bcl-xL in HCC cells, this weak interaction, in conjunction with the overexpression of Bcl-xL in HCC cells, may potentially contribute to HCC development through the interaction between C-terminal-truncated HBx and Bcl-xL.
Collapse
Affiliation(s)
- Hideki Kusunoki
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Taiichi Sakamoto
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, Narashino, Chiba 275-0016, Japan
| | - Naohiro Kobayashi
- Laboratory for Advanced NMR Application and Development, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| | - Toshiyuki Kohno
- Department of Medical Informatics, Research and Development Center for Medical Education, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Kaori Wakamatsu
- Department of Chemistry and Chemical Biology, Graduate School of Engineering, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Kyoto, Uji 611-0011, Japan
- Graduate School of Energy Science, Kyoto University, Kyoto, Uji 611-0011, Japan
- Integrated Research Center for Carbon Negative Science, Kyoto University, Kyoto, Uji 611-0011, Japan
- Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Kyoto, Uji 611-0011, Japan
| |
Collapse
|
2
|
Klukowski P, Damberger FF, Allain FHT, Iwai H, Kadavath H, Ramelot TA, Montelione GT, Riek R, Güntert P. The 100-protein NMR spectra dataset: A resource for biomolecular NMR data analysis. Sci Data 2024; 11:30. [PMID: 38177162 PMCID: PMC10767026 DOI: 10.1038/s41597-023-02879-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024] Open
Abstract
Multidimensional NMR spectra are the basis for studying proteins by NMR spectroscopy and crucial for the development and evaluation of methods for biomolecular NMR data analysis. Nevertheless, in contrast to derived data such as chemical shift assignments in the BMRB and protein structures in the PDB databases, this primary data is in general not publicly archived. To change this unsatisfactory situation, we present a standardized set of solution NMR data comprising 1329 2-4-dimensional NMR spectra and associated reference (chemical shift assignments, structures) and derived (peak lists, restraints for structure calculation, etc.) annotations. With the 100-protein NMR spectra dataset that was originally compiled for the development of the ARTINA deep learning-based spectra analysis method, 100 protein structures can be reproduced from their original experimental data. The 100-protein NMR spectra dataset is expected to help the development of computational methods for NMR spectroscopy, in particular machine learning approaches, and enable consistent and objective comparisons of these methods.
Collapse
Affiliation(s)
- Piotr Klukowski
- Institute of Molecular Physical Science, ETH Zurich, 8093, Zurich, Switzerland.
| | - Fred F Damberger
- Institute of Biochemistry, ETH Zurich, 8093, Zurich, Switzerland
| | | | - Hideo Iwai
- Institute of Biotechnology, University of Helsinki, 00100, Helsinki, Finland
| | | | - Theresa A Ramelot
- Department of Chemistry and Chemical Biology, and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Gaetano T Montelione
- Department of Chemistry and Chemical Biology, and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Roland Riek
- Institute of Molecular Physical Science, ETH Zurich, 8093, Zurich, Switzerland.
| | - Peter Güntert
- Institute of Molecular Physical Science, ETH Zurich, 8093, Zurich, Switzerland.
- Institute of Biophysical Chemistry, Goethe University, 60438, Frankfurt am Main, Germany.
- Department of Chemistry, Tokyo Metropolitan University, Hachioji, 192-0397, Tokyo, Japan.
| |
Collapse
|
3
|
Eladl A, Yamaoki Y, Kamba K, Hoshina S, Horinouchi H, Kondo K, Waga S, Nagata T, Katahira M. NMR characterization of the structure of the intrinsically disordered region of human origin recognition complex subunit 1, hORC1, and of its interaction with G-quadruplex DNAs. Biochem Biophys Res Commun 2023; 683:149112. [PMID: 37857165 DOI: 10.1016/j.bbrc.2023.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Human origin recognition complex (hORC) binds to the DNA replication origin and then initiates DNA replication. However, hORC does not exhibit DNA sequence-specificity and how hORC recognizes the replication origin on genomic DNA remains elusive. Previously, we found that hORC recognizes G-quadruplex structures potentially formed near the replication origin. Then, we showed that hORC subunit 1 (hORC1) preferentially binds to G-quadruplex DNAs using a hORC1 construct comprising residues 413 to 511 (hORC1413-511). Here, we investigate the structural characteristics of hORC1413-511 in its free and complex forms with G-quadruplex DNAs. Circular dichroism and nuclear magnetic resonance (NMR) spectroscopic studies indicated that hORC1413-511 is disordered except for a short α-helical region in both the free and complex forms. NMR chemical shift perturbation (CSP) analysis suggested that basic residues, arginines and lysines, and polar residues, serines and threonines, are involved in the G-quadruplex DNA binding. Then, this was confirmed by mutation analysis. Interestingly, CSP analysis indicated that hORC1413-511 binds to both parallel- and (3 + 1)-type G-quadruplex DNAs using the same residues, and thereby in the same manner. Our study suggests that hORC1 uses its intrinsically disordered G-quadruplex binding region to recognize parallel-type and (3 + 1)-type G-quadruplex structures at replication origin.
Collapse
Affiliation(s)
- Afaf Eladl
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan; Graduate School of Energy Science, Kyoto University, Kyoto, 611-0011, Japan; Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Yudai Yamaoki
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan; Graduate School of Energy Science, Kyoto University, Kyoto, 611-0011, Japan; Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan; Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Keisuke Kamba
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan; Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shoko Hoshina
- Department of Chemical and Biological Sciences, Japan Women's University, Tokyo, 112-8681, Japan
| | - Haruka Horinouchi
- Department of Chemical and Biological Sciences, Japan Women's University, Tokyo, 112-8681, Japan
| | - Keiko Kondo
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan; Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan; Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shou Waga
- Department of Chemical and Biological Sciences, Japan Women's University, Tokyo, 112-8681, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan; Graduate School of Energy Science, Kyoto University, Kyoto, 611-0011, Japan; Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan; Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan; Graduate School of Energy Science, Kyoto University, Kyoto, 611-0011, Japan; Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan; Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
4
|
Kusunoki H, Hamaguchi I, Kobayashi N, Nagata T. Chemical shift assignments of a fusion protein comprising the C-terminal-deleted hepatitis B virus X protein BH3-like motif peptide and Bcl-x L. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:357-361. [PMID: 36044106 DOI: 10.1007/s12104-022-10104-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Chronic hepatitis B virus (HBV) infection is a major risk factor for the development of liver diseases including fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). HBV has the multifunctional protein, HBV X protein (HBx, 154 residues), which plays key roles in HBV replication and liver disease development. Interaction of HBx through its BH3-like motif with the anti-apoptotic protein Bcl-xL leads to HBV replication and induction of apoptosis, resulting in HCC development. Our previous nuclear magnetic resonance (NMR) study revealed that the HBx BH3-like motif peptide (residues 101-136) binds to the common BH3-binding groove of Bcl-xL. Importantly, a C-terminal-truncated HBx, e.g., residues 1-120 of HBx, is strongly associated with the increased risk of HBV-related HCC development. However, the interaction mode between the C-terminal-truncated HBx and Bcl-xL remains unclear. To elucidate this interaction mode, the C-terminal-deleted HBx BH3-like motif peptide (residues 101-120) was used as a model peptide in this study. To facilitate the NMR analysis, we prepared a fusion protein of HBx (101-120) and Bcl-xL connected with five repeats of the glycine-serine dipeptide as a linker. Here, we report the 1H, 13C, and 15N resonance assignments of the fusion protein. This is the first step for the elucidation of the pathogenesis of liver diseases caused by the interaction between the C-terminal-truncated HBx and Bcl-xL.
Collapse
Affiliation(s)
- Hideki Kusunoki
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Musashimurayama, Tokyo, 208-0011, Japan.
| | - Isao Hamaguchi
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Musashimurayama, Tokyo, 208-0011, Japan
| | - Naohiro Kobayashi
- Laboratory for Advanced NMR Application and Development, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, 230-0045, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011, Japan.
- Graduate School of Energy Science, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
5
|
Presence of β-Turn Structure in Recombinant Spider Silk Dissolved in Formic Acid Revealed with NMR. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020511. [PMID: 35056828 PMCID: PMC8778467 DOI: 10.3390/molecules27020511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/23/2022]
Abstract
Spider dragline silk is a biopolymer with excellent mechanical properties. The development of recombinant spider silk protein (RSP)-based materials with these properties is desirable. Formic acid (FA) is a spinning solvent for regenerated Bombyx mori silk fiber with excellent mechanical properties. To use FA as a spinning solvent for RSP with the sequence of major ampullate spider silk protein from Araneus diadematus, we determined the conformation of RSP in FA using solution NMR to determine the role of FA as a spinning solvent. We assigned 1H, 13C, and 15N chemical shifts to 32-residue repetitive sequences, including polyAla and Gly-rich regions of RSP. Chemical shift evaluation revealed that RSP is in mainly random coil conformation with partially type II β-turn structure in the Gly-Pro-Gly-X motifs of the Gly-rich region in FA, which was confirmed by the 15N NOE data. In addition, formylation at the Ser OH groups occurred in FA. Furthermore, we evaluated the conformation of the as-cast film of RSP dissolved in FA using solid-state NMR and found that β-sheet structure was predominantly formed.
Collapse
|
6
|
Iwakawa N, Morimoto D, Walinda E, Leeb S, Shirakawa M, Danielsson J, Sugase K. Transient Diffusive Interactions with a Protein Crowder Affect Aggregation Processes of Superoxide Dismutase 1 β-Barrel. J Phys Chem B 2021; 125:2521-2532. [PMID: 33657322 DOI: 10.1021/acs.jpcb.0c11162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aggregate formation of superoxide dismutase 1 (SOD1) inside motor neurons is known as a major factor in onset of amyotrophic lateral sclerosis. The thermodynamic stability of the SOD1 β-barrel has been shown to decrease in crowded environments such as inside a cell, but it remains unclear how the thermodynamics of crowding-induced protein destabilization relate to SOD1 aggregation. Here we have examined the effects of a protein crowder, lysozyme, on fibril aggregate formation of the SOD1 β-barrel. We found that aggregate formation of SOD1 is decelerated even in mildly crowded solutions. Intriguingly, transient diffusive interactions with lysozyme do not significantly affect the static structure of the SOD1 β-barrel but stabilize an alternative excited "invisible" state. The net effect of crowding is to favor species off the aggregation pathway, thereby explaining the decelerated aggregation in the crowded environment. Our observations suggest that the intracellular environment may have a similar negative (inhibitory) effect on fibril formation of other amyloidogenic proteins in living cells. Deciphering how crowded intracellular environments affect aggregation and fibril formation of such disease-associated proteins will probably become central in understanding the exact role of aggregation in the etiology of these enigmatic diseases.
Collapse
Affiliation(s)
- Naoto Iwakawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Daichi Morimoto
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Erik Walinda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Sarah Leeb
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Masahiro Shirakawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Jens Danielsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Kenji Sugase
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
7
|
Mechanism of hERG inhibition by gating-modifier toxin, APETx1, deduced by functional characterization. BMC Mol Cell Biol 2021; 22:3. [PMID: 33413079 PMCID: PMC7791793 DOI: 10.1186/s12860-020-00337-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Background Human ether-à-go-go-related gene potassium channel 1 (hERG) is a voltage-gated potassium channel, the voltage-sensing domain (VSD) of which is targeted by a gating-modifier toxin, APETx1. APETx1 is a 42-residue peptide toxin of sea anemone Anthopleura elegantissima and inhibits hERG by stabilizing the resting state. A previous study that conducted cysteine-scanning analysis of hERG identified two residues in the S3-S4 region of the VSD that play important roles in hERG inhibition by APETx1. However, mutational analysis of APETx1 could not be conducted as only natural resources have been available until now. Therefore, it remains unclear where and how APETx1 interacts with the VSD in the resting state. Results We established a method for preparing recombinant APETx1 and determined the NMR structure of the recombinant APETx1, which is structurally equivalent to the natural product. Electrophysiological analyses using wild type and mutants of APETx1 and hERG revealed that their hydrophobic residues, F15, Y32, F33, and L34, in APETx1, and F508 and I521 in hERG, in addition to a previously reported acidic hERG residue, E518, play key roles in the inhibition of hERG by APETx1. Our hypothetical docking models of the APETx1-VSD complex satisfied the results of mutational analysis. Conclusions The present study identified the key residues of APETx1 and hERG that are involved in hERG inhibition by APETx1. These results would help advance understanding of the inhibitory mechanism of APETx1, which could provide a structural basis for designing novel ligands targeting the VSDs of KV channels.
Collapse
|
8
|
Tohda R, Tanaka H, Mutoh R, Zhang X, Lee YH, Konuma T, Ikegami T, Migita CT, Kurisu G. Crystal structure of higher plant heme oxygenase-1 and its mechanism of interaction with ferredoxin. J Biol Chem 2021; 296:100217. [PMID: 33839679 PMCID: PMC7948506 DOI: 10.1074/jbc.ra120.016271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 11/06/2022] Open
Abstract
Heme oxygenase (HO) converts heme to carbon monoxide, biliverdin, and free iron, products that are essential in cellular redox signaling and iron recycling. In higher plants, HO is also involved in the biosynthesis of photoreceptor pigment precursors. Despite many common enzymatic reactions, the amino acid sequence identity between plant-type and other HOs is exceptionally low (∼19.5%), and amino acids that are catalytically important in mammalian HO are not conserved in plant-type HOs. Structural characterization of plant-type HO is limited to spectroscopic characterization by electron spin resonance, and it remains unclear how the structure of plant-type HO differs from that of other HOs. Here, we have solved the crystal structure of Glycine max (soybean) HO-1 (GmHO-1) at a resolution of 1.06 Å and carried out the isothermal titration calorimetry measurements and NMR spectroscopic studies of its interaction with ferredoxin, the plant-specific electron donor. The high-resolution X-ray structure of GmHO-1 reveals several novel structural components: an additional irregularly structured region, a new water tunnel from the active site to the surface, and a hydrogen-bonding network unique to plant-type HOs. Structurally important features in other HOs, such as His ligation to the bound heme, are conserved in GmHO-1. Based on combined data from X-ray crystallography, isothermal titration calorimetry, and NMR measurements, we propose the evolutionary fine-tuning of plant-type HOs for ferredoxin dependency in order to allow adaptation to dynamic pH changes on the stroma side of the thylakoid membrane in chloroplast without losing enzymatic activity under conditions of fluctuating light.
Collapse
Affiliation(s)
- Rei Tohda
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan; Department of Macromolecular Science, Osaka University, Toyonaka, Osaka, Japan
| | - Hideaki Tanaka
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan; Department of Macromolecular Science, Osaka University, Toyonaka, Osaka, Japan
| | - Risa Mutoh
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Xuhong Zhang
- Graduate School of Medical Science, Yamagata University, Yamagata, Yamagata, Japan
| | - Young-Ho Lee
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Chungbuk, South Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Yuseong-gu, Daejeon, South Korea; Research Headquarters, Korea Brain Research Institute, Dong-gu, Daegu, South Korea; Bio-Analytical Science, University of Science and Technology, Yuseong-gu, Daejeon, South Korea
| | - Tsuyoshi Konuma
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama, Japan
| | - Takahisa Ikegami
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama, Japan
| | - Catharina T Migita
- Department of Biological Chemistry, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan; Department of Macromolecular Science, Osaka University, Toyonaka, Osaka, Japan.
| |
Collapse
|
9
|
Bala S, Shinya S, Srivastava A, Ishikawa M, Shimada A, Kobayashi N, Kojima C, Tama F, Miyashita O, Kohda D. Crystal contact-free conformation of an intrinsically flexible loop in protein crystal: Tim21 as the case study. Biochim Biophys Acta Gen Subj 2019; 1864:129418. [PMID: 31449839 DOI: 10.1016/j.bbagen.2019.129418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/02/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND In protein crystals, flexible loops are frequently deformed by crystal contacts, whereas in solution, the large motions result in the poor convergence of such flexible loops in NMR structure determinations. We need an experimental technique to characterize the structural and dynamic properties of intrinsically flexible loops of protein molecules. METHODS We designed an intended crystal contact-free space (CCFS) in protein crystals, and arranged the flexible loop of interest in the CCFS. The yeast Tim 21 protein was chosen as the model protein, because one of the loops (loop 2) is distorted by crystal contacts in the conventional crystal. RESULTS Yeast Tim21 was fused to the MBP protein by a rigid α-helical linker. The space created between the two proteins was used as the CCFS. The linker length provides adjustable freedom to arrange loop 2 in the CCFS. We re-determined the NMR structure of yeast Tim21, and conducted MD simulations for comparison. Multidimensional scaling was used to visualize the conformational similarity of loop 2. We found that the crystal contact-free conformation of loop 2 is located close to the center of the ensembles of the loop 2 conformations in the NMR and MD structures. CONCLUSIONS Loop 2 of yeast Tim21 in the CCFS adopts a representative, dominant conformation in solution. GENERAL SIGNIFICANCE No single powerful technique is available for the characterization of flexible structures in protein molecules. NMR analyses and MD simulations provide useful, but incomplete information. CCFS crystallography offers a third route to this goal.
Collapse
Affiliation(s)
- Siqin Bala
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shoko Shinya
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Arpita Srivastava
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Marie Ishikawa
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Atsushi Shimada
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Naohiro Kobayashi
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Chojiro Kojima
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan; Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Florence Tama
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Center for Computational Science, RIKEN, 6-7-1 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Osamu Miyashita
- Center for Computational Science, RIKEN, 6-7-1 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Daisuke Kohda
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
10
|
NMR Analysis on Molecular Interaction of Lignin with Amino Acid Residues of Carbohydrate-Binding Module from Trichoderma reesei Cel7A. Sci Rep 2019; 9:1977. [PMID: 30760856 PMCID: PMC6374431 DOI: 10.1038/s41598-018-38410-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022] Open
Abstract
Lignocellulosic biomass is anticipated to serve as a platform for green chemicals and fuels. Nonproductive binding of lignin to cellulolytic enzymes should be avoided for conversion of lignocellulose through enzymatic saccharification. Although carbohydrate-binding modules (CBMs) of cellulolytic enzymes strongly bind to lignin, the adsorption mechanism at molecular level is still unclear. Here, we report NMR-based analyses of binding sites on CBM1 of cellobiohydrolase I (Cel7A) from a hyper-cellulase-producing fungus, Trichoderma reesei, with cellohexaose and lignins from Japanese cedar (C-MWL) and Eucalyptus globulus (E-MWL). A method was established to obtain properly folded TrCBM1. Only TrCBM1 that was expressed in freshly transformed E. coli had intact conformation. Chemical shift perturbation analyses revealed that TrCBM1 adsorbed cellohexaose in highly specific manner via two subsites, flat plane surface and cleft, which were located on the opposite side of the protein surface. Importantly, MWLs were adsorbed at multiple binding sites, including the subsites, having higher affinity than cellohexaose. G6 and Q7 were involved in lignin binding on the flat plane surface of TrCBM1, while cellohexaose preferentially interacted with N29 and Q34. TrCBM1 used much larger surface area to bind with C-MWL than E-MWL, indicating the mechanisms of adsorption toward hardwood and softwood lignins are different.
Collapse
|
11
|
Schuller JM, Birrell JA, Tanaka H, Konuma T, Wulfhorst H, Cox N, Schuller SK, Thiemann J, Lubitz W, Sétif P, Ikegami T, Engel BD, Kurisu G, Nowaczyk MM. Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer. Science 2018; 363:257-260. [PMID: 30573545 DOI: 10.1126/science.aau3613] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022]
Abstract
Photosynthetic complex I enables cyclic electron flow around photosystem I, a regulatory mechanism for photosynthetic energy conversion. We report a 3.3-angstrom-resolution cryo-electron microscopy structure of photosynthetic complex I from the cyanobacterium Thermosynechococcus elongatus. The model reveals structural adaptations that facilitate binding and electron transfer from the photosynthetic electron carrier ferredoxin. By mimicking cyclic electron flow with isolated components in vitro, we demonstrate that ferredoxin directly mediates electron transfer between photosystem I and complex I, instead of using intermediates such as NADPH (the reduced form of nicotinamide adenine dinucleotide phosphate). A large rate constant for association of ferredoxin to complex I indicates efficient recognition, with the protein subunit NdhS being the key component in this process.
Collapse
Affiliation(s)
- Jan M Schuller
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| | - James A Birrell
- Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Hideaki Tanaka
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Tsuyoshi Konuma
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hannes Wulfhorst
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany.,Daiichi Sankyo Deutschland GmbH, Zielstattstr. 48, 81379 München, Germany
| | - Nicholas Cox
- Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany.,Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Sandra K Schuller
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Jacqueline Thiemann
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Pierre Sétif
- Institut de Biologie Intégrative de la Cellule (I2BC), IBITECS, CEA, CNRS, Université Paris-Saclay, F-91198 Gif-sur-Yvette, France
| | - Takahisa Ikegami
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Benjamin D Engel
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan. .,Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Marc M Nowaczyk
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany.
| |
Collapse
|
12
|
Sugiki T, Furuita K, Fujiwara T, Kojima C. Amino Acid Selective 13C Labeling and 13C Scrambling Profile Analysis of Protein α and Side-Chain Carbons in Escherichia coli Utilized for Protein Nuclear Magnetic Resonance. Biochemistry 2018; 57:3576-3589. [PMID: 29924600 DOI: 10.1021/acs.biochem.8b00182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amino acid selective isotope labeling is an important nuclear magnetic resonance technique, especially for larger proteins, providing strong bases for the unambiguous resonance assignments and information concerning the structure, dynamics, and intermolecular interactions. Amino acid selective 15N labeling suffers from isotope dilution caused by metabolic interconversion of the amino acids, resulting in isotope scrambling within the target protein. Carbonyl 13C atoms experience less isotope scrambling than the main-chain 15N atoms do. However, little is known about the side-chain 13C atoms. Here, the 13C scrambling profiles of the Cα and side-chain carbons were investigated for 15N scrambling-prone amino acids, such as Leu, Ile, Tyr, Phe, Thr, Val, and Ala. The level of isotope scrambling was substantially lower in 13Cα and 13C side-chain labeling than in 15N labeling. We utilized this reduced scrambling-prone character of 13C as a simple and efficient method for amino acid selective 13C labeling using an Escherichia coli cold-shock expression system and high-cell density fermentation. Using this method, the 13C labeling efficiency was >80% for Leu and Ile, ∼60% for Tyr and Phe, ∼50% for Thr, ∼40% for Val, and 30-40% for Ala. 1H-15N heteronuclear single-quantum coherence signals of the 15N scrambling-prone amino acid were also easily filtered using 15N-{13Cα} spin-echo difference experiments. Our method could be applied to the assignment of the 55 kDa protein.
Collapse
Affiliation(s)
- Toshihiko Sugiki
- Institute for Protein Research , Osaka University , 3-2 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Kyoko Furuita
- Institute for Protein Research , Osaka University , 3-2 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Toshimichi Fujiwara
- Institute for Protein Research , Osaka University , 3-2 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Chojiro Kojima
- Institute for Protein Research , Osaka University , 3-2 Yamadaoka , Suita , Osaka 565-0871 , Japan.,Graduate School of Engineering Science , Yokohama National University , 79-5 Tokiwadai , Hodogaya-ku, Yokohama 240-8501 , Japan
| |
Collapse
|
13
|
Yogo R, Yanaka S, Kato K. Backbone 1H, 13C, and 15N assignments of the extracellular region of human Fcγ receptor IIIb. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:201-204. [PMID: 29453714 DOI: 10.1007/s12104-018-9809-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
Fcγ receptor (FcγR) promotes various immune responses through interactions with the Fc portion of immunoglobulin G (IgG). FcγRIIIb is a glycosylphosphatidylinositol-linked protein expressed on neutrophils and triggers degranulation and opsonic phagocytosis. The extracellular region of FcγR is composed of two Ig-fold domains and can be cleaved as a soluble form (sFcγRIIIb), which is also reactive with complement receptor type 3. Although structure and Fc interaction of sFcγRIIIb have been characterized by X-ray crystallography, little has been known about its structure in solution. We herein report the backbone NMR assignments of human sFcγRIIIb to gain basic understanding of functional IgG-FcγRIII interactions of immunological and biopharmaceutical interest regarding the structural investigation.
Collapse
Affiliation(s)
- Rina Yogo
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Saeko Yanaka
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Koichi Kato
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan.
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.
| |
Collapse
|
14
|
Plastic roles of phenylalanine and tyrosine residues of TLS/FUS in complex formation with the G-quadruplexes of telomeric DNA and TERRA. Sci Rep 2018; 8:2864. [PMID: 29434328 PMCID: PMC5809584 DOI: 10.1038/s41598-018-21142-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/29/2018] [Indexed: 01/01/2023] Open
Abstract
The length of a telomere is regulated via elongation and shortening processes. Telomeric DNA and telomeric repeat-containing RNA (TERRA), which both contain G-rich repeated sequences, form G-quadruplex structures. Previously, translocated in liposarcoma (TLS) protein, also known as fused in sarcoma (FUS) protein, was found to form a ternary complex with the G-quadruplex structures of telomeric DNA and TERRA. We then showed that the third RGG motif of TLS, the RGG3 domain, is responsible for the complex formation. However, the structural basis for their binding remains obscure. Here, NMR-based binding assaying revealed the interactions in the binary and ternary complexes of RGG3 with telomeric DNA or/and TERRA. In the ternary complex, tyrosine bound exclusively to TERRA, while phenylalanine bound exclusively to telomeric DNA. Thus, tyrosine and phenylalanine each play a central role in the recognition of TERRA and telomeric DNA, respectively. Surprisingly in the binary complexes, RGG3 used both tyrosine and phenylalanine residues to bind to either TERRA or telomeric DNA. We propose that the plastic roles of tyrosine and phenylalanine are important for RGG3 to efficiently form the ternary complex, and thereby regulate the telomere shortening.
Collapse
|
15
|
Iwaoka R, Nagata T, Tsuda K, Imai T, Okano H, Kobayashi N, Katahira M. Backbone and side chain assignments of the second RNA-binding domain of Musashi-1 in its free form and in complex with 5-mer RNA. BIOMOLECULAR NMR ASSIGNMENTS 2017; 11:265-268. [PMID: 28808919 DOI: 10.1007/s12104-017-9760-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
Musashi1 (Msi1) is an RNA-binding protein that is involved in cell fate determination. Here, we report the 1H, 15N, and 13C resonance assignments of Msi1 second RNA-binding domain in free form and in complex with RNA. The assignments can be utilized for NMR structure and dynamics analyses of the Msi1:RNA complex, and moreover, for chemical shift perturbation analyses to evaluate the binding of potential small molecule inhibitors against Msi1:RNA interaction.
Collapse
Affiliation(s)
- Ryo Iwaoka
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
- Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| | - Kengo Tsuda
- RIKEN Center for Life Science Technologies, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Takao Imai
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Naohiro Kobayashi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
- Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
16
|
NMR Detection of Semi-Specific Antibody Interactions in Serum Environments. Molecules 2017; 22:molecules22101619. [PMID: 28953258 PMCID: PMC6151507 DOI: 10.3390/molecules22101619] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/22/2017] [Indexed: 11/29/2022] Open
Abstract
Although antibody functions are executed in heterogeneous blood streams characterized by molecular crowding and promiscuous intermolecular interaction, detailed structural characterizations of antibody interactions have thus far been performed under homogeneous in vitro conditions. NMR spectroscopy potentially has the ability to study protein structures in heterogeneous environments, assuming that the target protein can be labeled with NMR-active isotopes. Based on our successful development of isotope labeling of antibody glycoproteins, here we apply NMR spectroscopy to characterize antibody interactions in heterogeneous extracellular environments using mouse IgG-Fc as a test molecule. In human serum, many of the HSQC peaks originating from the Fc backbone exhibited attenuation in intensity of various magnitudes. Similar spectral changes were induced by the Fab fragment of polyclonal IgG isolated from the serum, but not by serum albumin, indicating that a subset of antibodies reactive with mouse IgG-Fc exists in human serum without preimmunization. The metaepitopes recognized by serum polyclonal IgG cover the entire molecular surface of Fc, including the binding sites to Fc receptors and C1q. In-serum NMR observation will offer useful tools for the detailed characterization of biopharamaceuticals, including therapeutic antibodies in physiologically relevant heterogeneous environments, also giving deeper insight into molecular recognition by polyclonal antibodies in the immune system.
Collapse
|
17
|
Structural Insight into the Recognition of r(UAG) by Musashi-1 RBD2, and Construction of a Model of Musashi-1 RBD1-2 Bound to the Minimum Target RNA. Molecules 2017; 22:molecules22071207. [PMID: 28753936 PMCID: PMC6152312 DOI: 10.3390/molecules22071207] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 12/23/2022] Open
Abstract
Musashi-1 (Msi1) controls the maintenance of stem cells and tumorigenesis through binding to its target mRNAs and subsequent translational regulation. Msi1 has two RNA-binding domains (RBDs), RBD1 and RBD2, which recognize r(GUAG) and r(UAG), respectively. These minimal recognition sequences are connected by variable linkers in the Msi1 target mRNAs, however, the molecular mechanism by which Msi1 recognizes its targets is not yet understood. We previously determined the solution structure of the Msi1 RBD1:r(GUAGU) complex. Here, we determined the first structure of the RBD2:r(GUAGU) complex. The structure revealed that the central trinucleotide, r(UAG), is specifically recognized by the intermolecular hydrogen-bonding and aromatic stacking interactions. Importantly, the C-terminal region, which is disordered in the free form, took a certain conformation, resembling a helix. The observation of chemical shift perturbation and intermolecular NOEs, together with increases in the heteronuclear steady-state {1H}-15N NOE values on complex formation, indicated the involvement of the C-terminal region in RNA binding. On the basis of the two complex structures, we built a structural model of consecutive RBDs with r(UAGGUAG) containing both minimal recognition sequences, which resulted in no steric hindrance. The model suggests recognition of variable lengths (n) of the linker up to n = 50 may be possible.
Collapse
|
18
|
Sugiki T, Kobayashi N, Fujiwara T. Modern Technologies of Solution Nuclear Magnetic Resonance Spectroscopy for Three-dimensional Structure Determination of Proteins Open Avenues for Life Scientists. Comput Struct Biotechnol J 2017; 15:328-339. [PMID: 28487762 PMCID: PMC5408130 DOI: 10.1016/j.csbj.2017.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 02/07/2023] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for structural studies of chemical compounds and biomolecules such as DNA and proteins. Since the NMR signal sensitively reflects the chemical environment and the dynamics of a nuclear spin, NMR experiments provide a wealth of structural and dynamic information about the molecule of interest at atomic resolution. In general, structural biology studies using NMR spectroscopy still require a reasonable understanding of the theory behind the technique and experience on how to recorded NMR data. Owing to the remarkable progress in the past decade, we can easily access suitable and popular analytical resources for NMR structure determination of proteins with high accuracy. Here, we describe the practical aspects, workflow and key points of modern NMR techniques used for solution structure determination of proteins. This review should aid NMR specialists aiming to develop new methods that accelerate the structure determination process, and open avenues for non-specialist and life scientists interested in using NMR spectroscopy to solve protein structures.
Collapse
Affiliation(s)
- Toshihiko Sugiki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naohiro Kobayashi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshimichi Fujiwara
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
19
|
Abstract
Traditional methods for the assessment of dietary intake are prone to error; in order to improve and enhance these methods increasing interest in the identification of dietary biomarkers has materialised. Metabolomics has emerged as a key tool in the area of dietary biomarker discovery and to date the use of metabolomics has identified a number of putative biomarkers. Applications to identify novel biomarkers of intake have in general taken three approaches: (1) specific acute intervention studies to identify specific biomarkers of intake; (2) searching for biomarkers in cohort studies by correlating to self-reported intake of a specific food/food group(s); (3) analysing dietary patterns in conjunction with metabolomic profiles to identify biomarkers and nutritypes. A number of analytical technologies are employed in metabolomics as currently there is no single technique capable of measuring the entire metabolome. These approaches each have their own advantages and disadvantages. The present review will provide an overview of current technologies and applications of metabolomics in the determination of new dietary biomarkers. In addition, it will address some of the current challenges in the field and future outlooks.
Collapse
|
20
|
Babak P, Kryuchkov S, Kantzas A. Parsimony and goodness-of-fit in multi-dimensional NMR inversion. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 274:46-56. [PMID: 27875798 DOI: 10.1016/j.jmr.2016.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/09/2016] [Accepted: 11/14/2016] [Indexed: 06/06/2023]
Abstract
Multi-dimensional nuclear magnetic resonance (NMR) experiments are often used for study of molecular structure and dynamics of matter in core analysis and reservoir evaluation. Industrial applications of multi-dimensional NMR involve a high-dimensional measurement dataset with complicated correlation structure and require rapid and stable inversion algorithms from the time domain to the relaxation rate and/or diffusion domains. In practice, applying existing inverse algorithms with a large number of parameter values leads to an infinite number of solutions with a reasonable fit to the NMR data. The interpretation of such variability of multiple solutions and selection of the most appropriate solution could be a very complex problem. In most cases the characteristics of materials have sparse signatures, and investigators would like to distinguish the most significant relaxation and diffusion values of the materials. To produce an easy to interpret and unique NMR distribution with the finite number of the principal parameter values, we introduce a new method for NMR inversion. The method is constructed based on the trade-off between the conventional goodness-of-fit approach to multivariate data and the principle of parsimony guaranteeing inversion with the least number of parameter values. We suggest performing the inversion of NMR data using the forward stepwise regression selection algorithm. To account for the trade-off between goodness-of-fit and parsimony, the objective function is selected based on Akaike Information Criterion (AIC). The performance of the developed multi-dimensional NMR inversion method and its comparison with conventional methods are illustrated using real data for samples with bitumen, water and clay.
Collapse
Affiliation(s)
- Petro Babak
- University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada.
| | - Sergey Kryuchkov
- University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada; PERM Inc., 3956 29 Street NE, Calgary, Alberta T1Y 6B6, Canada
| | - Apostolos Kantzas
- University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada; PERM Inc., 3956 29 Street NE, Calgary, Alberta T1Y 6B6, Canada
| |
Collapse
|
21
|
Harada E, Sugase K, Namba K, Murata Y. The helical propensity of the extracellular loop is responsible for the substrate specificity of Fe(III)-phytosiderophore transporters. FEBS Lett 2016; 590:4617-4627. [PMID: 27861811 PMCID: PMC5216903 DOI: 10.1002/1873-3468.12482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/30/2016] [Accepted: 11/03/2016] [Indexed: 11/17/2022]
Abstract
Hordeum vulgare L. yellow stripe 1 (HvYS1) is a selective transporter of Fe(III)-phytosiderophores in barley that is responsible for iron acquisition from the soil. In contrast, maize Zea mays, yellow stripe 1 (ZmYS1) possesses broad substrate specificity. In this study, a quantitative evaluation of the transport activities of HvYS1 and ZmYS1 chimera proteins revealed that the seventh extracellular membrane loop is essential for substrate specificity. The loop peptides of both transporters were prepared and analysed by circular dichroism and NMR. The spectra revealed a higher propensity for α-helical conformation of the HvYS1 loop peptide and a largely disordered structure for that of ZmYS1. These structural differences are potentially responsible for the substrate specificities of the transporters.
Collapse
Affiliation(s)
- Erisa Harada
- Bioorganic Research InstituteSuntory Foundation for Life SciencesKyotoJapan
| | - Kenji Sugase
- Bioorganic Research InstituteSuntory Foundation for Life SciencesKyotoJapan
- Present address: Department of Molecular EngineeringGraduate School of EngineeringKyoto UniversityKyotoJapan
| | - Kosuke Namba
- Department of Pharmaceutical ScienceTokushima UniversityJapan
| | - Yoshiko Murata
- Bioorganic Research InstituteSuntory Foundation for Life SciencesKyotoJapan
| |
Collapse
|
22
|
The impact of structural genomics: the first quindecennial. ACTA ACUST UNITED AC 2016; 17:1-16. [PMID: 26935210 DOI: 10.1007/s10969-016-9201-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/17/2016] [Indexed: 12/21/2022]
Abstract
The period 2000-2015 brought the advent of high-throughput approaches to protein structure determination. With the overall funding on the order of $2 billion (in 2010 dollars), the structural genomics (SG) consortia established worldwide have developed pipelines for target selection, protein production, sample preparation, crystallization, and structure determination by X-ray crystallography and NMR. These efforts resulted in the determination of over 13,500 protein structures, mostly from unique protein families, and increased the structural coverage of the expanding protein universe. SG programs contributed over 4400 publications to the scientific literature. The NIH-funded Protein Structure Initiatives alone have produced over 2000 scientific publications, which to date have attracted more than 93,000 citations. Software and database developments that were necessary to handle high-throughput structure determination workflows have led to structures of better quality and improved integrity of the associated data. Organized and accessible data have a positive impact on the reproducibility of scientific experiments. Most of the experimental data generated by the SG centers are freely available to the community and has been utilized by scientists in various fields of research. SG projects have created, improved, streamlined, and validated many protocols for protein production and crystallization, data collection, and functional analysis, significantly benefiting biological and biomedical research.
Collapse
|
23
|
Sasaki R, Kitazawa S, Kitahara R, Nakazawa H, Tanaka Y, Kumagai I, Umetsu M, Makabe K. Zinc Ion-binding Activity of an Anti-ZnO VHH Antibody, 4F2. CHEM LETT 2015. [DOI: 10.1246/cl.150537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ryosuke Sasaki
- Graduate School of Science and Engineering, Yamagata University
| | | | - Ryo Kitahara
- College of Pharmaceutical Sciences, Ritsumeikan University
| | - Hikaru Nakazawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University
| | | | - Izumi Kumagai
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University
| | - Koki Makabe
- Graduate School of Science and Engineering, Yamagata University
| |
Collapse
|
24
|
Brennan L. NMR-based metabolomics: from sample preparation to applications in nutrition research. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 83:42-9. [PMID: 25456316 DOI: 10.1016/j.pnmrs.2014.09.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 05/24/2023]
Abstract
Metabolomics is the study of metabolites present in biological samples such as biofluids, tissue/cellular extracts and culture media. Measurement of these metabolites is achieved through use of analytical techniques such as NMR and mass spectrometry coupled to liquid chromatography. Combining metabolomic data with multivariate data analysis tools allows the elucidation of alterations in metabolic pathways under different physiological conditions. Applications of NMR-based metabolomics have grown in recent years and it is now widely used across a number of disciplines. The present review gives an overview of the developments in the key steps involved in an NMR-based metabolomics study. Furthermore, there will be a particular emphasis on the use of NMR-based metabolomics in nutrition research.
Collapse
Affiliation(s)
- Lorraine Brennan
- UCD Institute of Food and Health, Belfield, UCD, Dublin 4, Ireland.
| |
Collapse
|
25
|
Walinda E, Morimoto D, Sugase K, Konuma T, Tochio H, Shirakawa M. Solution structure of the ubiquitin-associated (UBA) domain of human autophagy receptor NBR1 and its interaction with ubiquitin and polyubiquitin. J Biol Chem 2014; 289:13890-902. [PMID: 24692539 DOI: 10.1074/jbc.m114.555441] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
NBR1 (neighbor of BRCA1 gene 1) is a protein commonly found in ubiquitin-positive inclusions in neurodegenerative diseases. Due to its high architectural similarity to the well studied autophagy receptor protein p62/SQSTM1, NBR1 has been thought to analogously bind to ubiquitin-marked autophagic substrates via its C-terminal ubiquitin-associated (UBA) domain and deliver them to autophagosomes for degradation. Unexpectedly, we find that NBR1 differs from p62 in its UBA structure and accordingly in its interaction with ubiquitin. Structural differences are observed on helix α-3, which is tilted farther from helix α-2 and extended by approximately one turn in NBR1. This results not only in inhibition of a p62-type self-dimerization of NBR1 UBA but also in a significantly higher affinity for monoubiquitin as compared with p62 UBA. Importantly, the NBR1 UBA-ubiquitin complex structure shows that the negative charge of the side chain in front of the conserved MGF motif in the UBA plays an integral role in the recognition of ubiquitin. In addition, NMR and isothermal titration calorimetry experiments show that NBR1 UBA binds to each monomeric unit of polyubiquitin with similar affinity and by the same surface used for binding to monoubiquitin. This indicates that NBR1 lacks polyubiquitin linkage-type specificity, in good agreement with the nonspecific linkages observed in intracellular ubiquitin-positive inclusions. Consequently, our results demonstrate that the structural differences between NBR1 UBA and p62 UBA result in a much higher affinity of NBR1 for ubiquitin, which in turn suggests that NBR1 may form intracellular inclusions with ubiquitylated autophagic substrates more efficiently than p62.
Collapse
Affiliation(s)
- Erik Walinda
- From the Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan and
| | - Daichi Morimoto
- From the Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan and
| | - Kenji Sugase
- the Bioorganic Research Institute, Suntory Foundation for Life Sciences, Osaka 618-8503, Japan
| | - Tsuyoshi Konuma
- the Bioorganic Research Institute, Suntory Foundation for Life Sciences, Osaka 618-8503, Japan
| | - Hidehito Tochio
- From the Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan and
| | - Masahiro Shirakawa
- From the Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan and
| |
Collapse
|