1
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
2
|
Ohtomo H, Kurita JI, Sakuraba S, Li Z, Arimura Y, Wakamori M, Tsunaka Y, Umehara T, Kurumizaka H, Kono H, Nishimura Y. The N-terminal Tails of Histones H2A and H2B Adopt Two Distinct Conformations in the Nucleosome with Contact and Reduced Contact to DNA. J Mol Biol 2021; 433:167110. [PMID: 34153285 DOI: 10.1016/j.jmb.2021.167110] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 11/28/2022]
Abstract
The nucleosome comprises two histone dimers of H2A-H2B and one histone tetramer of (H3-H4)2, wrapped around by ~145 bp of DNA. Detailed core structures of nucleosomes have been established by X-ray and cryo-EM, however, histone tails have not been visualized. Here, we have examined the dynamic structures of the H2A and H2B tails in 145-bp and 193-bp nucleosomes using NMR, and have compared them with those of the H2A and H2B tail peptides unbound and bound to DNA. Whereas the H2A C-tail adopts a single but different conformation in both nucleosomes, the N-tails of H2A and H2B adopt two distinct conformations in each nucleosome. To clarify these conformations, we conducted molecular dynamics (MD) simulations, which suggest that the H2A N-tail can locate stably in either the major or minor grooves of nucleosomal DNA. While the H2B N-tail, which sticks out between two DNA gyres in the nucleosome, was considered to adopt two different orientations, one toward the entry/exit side and one on the opposite side. Then, the H2A N-tail minor groove conformation was obtained in the H2B opposite side and the H2B N-tail interacts with DNA similarly in both sides, though more varied conformations are obtained in the entry/exit side. Collectively, the NMR findings and MD simulations suggest that the minor groove conformer of the H2A N-tail is likely to contact DNA more strongly than the major groove conformer, and the H2A N-tail reduces contact with DNA in the major groove when the H2B N-tail is located in the entry/exit side.
Collapse
Affiliation(s)
- Hideaki Ohtomo
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Jun-Ichi Kurita
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shun Sakuraba
- Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Zhenhai Li
- Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Yasuhiro Arimura
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masatoshi Wakamori
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research (BDR), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yasuo Tsunaka
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research (BDR), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hidetoshi Kono
- Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8258, Japan.
| |
Collapse
|
3
|
Vincenzi M, Mercurio FA, Leone M. NMR Spectroscopy in the Conformational Analysis of Peptides: An Overview. Curr Med Chem 2021; 28:2729-2782. [PMID: 32614739 DOI: 10.2174/0929867327666200702131032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND NMR spectroscopy is one of the most powerful tools to study the structure and interaction properties of peptides and proteins from a dynamic perspective. Knowing the bioactive conformations of peptides is crucial in the drug discovery field to design more efficient analogue ligands and inhibitors of protein-protein interactions targeting therapeutically relevant systems. OBJECTIVE This review provides a toolkit to investigate peptide conformational properties by NMR. METHODS Articles cited herein, related to NMR studies of peptides and proteins were mainly searched through PubMed and the web. More recent and old books on NMR spectroscopy written by eminent scientists in the field were consulted as well. RESULTS The review is mainly focused on NMR tools to gain the 3D structure of small unlabeled peptides. It is more application-oriented as it is beyond its goal to deliver a profound theoretical background. However, the basic principles of 2D homonuclear and heteronuclear experiments are briefly described. Protocols to obtain isotopically labeled peptides and principal triple resonance experiments needed to study them, are discussed as well. CONCLUSION NMR is a leading technique in the study of conformational preferences of small flexible peptides whose structure can be often only described by an ensemble of conformations. Although NMR studies of peptides can be easily and fast performed by canonical protocols established a few decades ago, more recently we have assisted to tremendous improvements of NMR spectroscopy to investigate instead large systems and overcome its molecular weight limit.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Via Mezzocannone 16, 80134, Naples, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Via Mezzocannone 16, 80134, Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Via Mezzocannone 16, 80134, Naples, Italy
| |
Collapse
|
4
|
Okuda M, Ekimoto T, Kurita JI, Ikeguchi M, Nishimura Y. Structural and dynamical insights into the PH domain of p62 in human TFIIH. Nucleic Acids Res 2021; 49:2916-2930. [PMID: 33211877 PMCID: PMC7969019 DOI: 10.1093/nar/gkaa1045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/30/2020] [Accepted: 10/22/2020] [Indexed: 11/15/2022] Open
Abstract
TFIIH is a crucial transcription and DNA repair factor consisting of the seven-subunit core. The core subunit p62 contains a pleckstrin homology domain (PH-D), which is essential for locating TFIIH at transcription initiation and DNA damage sites, and two BSD (BTF2-like transcription factors, synapse-associated proteins and DOS2-like proteins) domains. A recent cryo-electron microscopy (cryo-EM) structure of human TFIIH visualized most parts of core, except for the PH-D. Here, by nuclear magnetic resonance spectroscopy we have established the solution structure of human p62 PH-D connected to the BSD1 domain by a highly flexible linker, suggesting the flexibility of PH-D in TFIIH. Based on this dynamic character, the PH-D was modeled in the cryo-EM structure to obtain the whole human TFIIH core structure, which indicates that the PH-D moves around the surface of core with a specific but limited spatial distribution; these dynamic structures were refined by molecular dynamics (MD) simulations. Furthermore, we built models, also refined by MD simulations, of TFIIH in complex with five p62-binding partners, including transcription factors TFIIEα, p53 and DP1, and nucleotide excision repair factors XPC and UVSSA. The models explain why the PH-D is crucially targeted by these factors, which use their intrinsically disordered acidic regions for TFIIH recruitment.
Collapse
Affiliation(s)
- Masahiko Okuda
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Jun-Ichi Kurita
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.,RIKEN Medical Sciences Innovation Hub Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8258, Japan
| |
Collapse
|
5
|
Yuwen T, Bah A, Brady JP, Ferrage F, Bouvignies G, Kay LE. Measuring Solvent Hydrogen Exchange Rates by Multifrequency Excitation 15N CEST: Application to Protein Phase Separation. J Phys Chem B 2018; 122:11206-11217. [DOI: 10.1021/acs.jpcb.8b06820] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Alaji Bah
- Hospital for Sick Children, Program in Molecular Medicine, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | | | - Fabien Ferrage
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Guillaume Bouvignies
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Lewis E. Kay
- Hospital for Sick Children, Program in Molecular Medicine, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
6
|
Abstract
It is well-established that dynamics are central to protein function; their importance is implicitly acknowledged in the principles of the Monod, Wyman and Changeux model of binding cooperativity, which was originally proposed in 1965. Nowadays the concept of protein dynamics is formulated in terms of the energy landscape theory, which can be used to understand protein folding and conformational changes in proteins. Because protein dynamics are so important, a key to understanding protein function at the molecular level is to design experiments that allow their quantitative analysis. Nuclear magnetic resonance (NMR) spectroscopy is uniquely suited for this purpose because major advances in theory, hardware, and experimental methods have made it possible to characterize protein dynamics at an unprecedented level of detail. Unique features of NMR include the ability to quantify dynamics (i) under equilibrium conditions without external perturbations, (ii) using many probes simultaneously, and (iii) over large time intervals. Here we review NMR techniques for quantifying protein dynamics on fast (ps-ns), slow (μs-ms), and very slow (s-min) time scales. These techniques are discussed with reference to some major discoveries in protein science that have been made possible by NMR spectroscopy.
Collapse
|
7
|
Solution structure of the isolated histone H2A-H2B heterodimer. Sci Rep 2016; 6:24999. [PMID: 27181506 PMCID: PMC4867618 DOI: 10.1038/srep24999] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/08/2016] [Indexed: 01/04/2023] Open
Abstract
During chromatin-regulated processes, the histone H2A-H2B heterodimer functions dynamically in and out of the nucleosome. Although detailed crystal structures of nucleosomes have been established, that of the isolated full-length H2A-H2B heterodimer has remained elusive. Here, we have determined the solution structure of human H2A-H2B by NMR coupled with CS-Rosetta. H2A and H2B each contain a histone fold, comprising four α-helices and two β-strands (α1-β1-α2-β2-α3-αC), together with the long disordered N- and C-terminal H2A tails and the long N-terminal H2B tail. The N-terminal αN helix, C-terminal β3 strand, and 310 helix of H2A observed in the H2A-H2B nucleosome structure are disordered in isolated H2A-H2B. In addition, the H2A α1 and H2B αC helices are not well fixed in the heterodimer, and the H2A and H2B tails are not completely random coils. Comparison of hydrogen-deuterium exchange, fast hydrogen exchange, and {(1)H}-(15)N hetero-nuclear NOE data with the CS-Rosetta structure indicates that there is some conformation in the H2A 310 helical and H2B Lys11 regions, while the repression domain of H2B (residues 27-34) exhibits an extended string-like structure. This first structure of the isolated H2A-H2B heterodimer provides insight into its dynamic functions in chromatin.
Collapse
|
8
|
Hošek T, Gil-Caballero S, Pierattelli R, Brutscher B, Felli IC. Longitudinal relaxation properties of (1)H(N) and (1)H(α) determined by direct-detected (13)C NMR experiments to study intrinsically disordered proteins (IDPs). JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 254:19-26. [PMID: 25771525 DOI: 10.1016/j.jmr.2015.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 06/04/2023]
Abstract
Intrinsically disordered proteins (IDPs) are functional proteins containing large fragments characterized by high local mobility. Bioinformatic studies have suggested that a significant fraction (more than 30%) of eukaryotic proteins has disordered regions of more than 50 amino acids in length. Hence, NMR methods for the characterization of local compactness and solvent accessibility in such highly disordered proteins are of high importance. Among the available approaches, the HET-SOFAST/BEST experiments (Schanda et al., 2006, Rennella et al., 2014) provide semi-quantitative information by monitoring longitudinal (1)H relaxation of amide protons under different initial conditions. However, when approaching physiological sample conditions, the potential of these amide (1)H detected experiments is reduced due to rapid amide proton solvent exchange. (13)C direct detection methods therefore provide a valuable alternative thanks to a higher chemical shift dispersion and their intrinsic insensitivity toward solvent exchange. Here we present two sets of (13)C-detected experiments, which indirectly measure (1)H(N) and (1)H(α) inversion recovery profiles. The experiments consist of an initial spin inversion-recovery block optimized for selective manipulation of different types of proton spins followed by a CON read-out scheme. The proposed experiments were tested on human α-synuclein and ubiquitin, two representative examples of unfolded and folded proteins.
Collapse
Affiliation(s)
- Tomáš Hošek
- CERM and Department of Chemistry Ugo Schiff, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | | | - Roberta Pierattelli
- CERM and Department of Chemistry Ugo Schiff, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Bernhard Brutscher
- Institut de Biologie Structurale, Université Grenoble 1, CNRS, CEA, 71 avenue des Martyrs, 38044 Grenoble Cedex 9, France.
| | - Isabella C Felli
- CERM and Department of Chemistry Ugo Schiff, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
9
|
Kumar A, Balbach J. Real-time protein NMR spectroscopy and investigation of assisted protein folding. Biochim Biophys Acta Gen Subj 2014; 1850:1965-72. [PMID: 25497212 DOI: 10.1016/j.bbagen.2014.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/26/2014] [Accepted: 12/02/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND During protein-folding reactions toward the native structure, short-lived intermediate states can be populated. Such intermediates expose hydrophobic patches and can self-associate leading to non-productive protein misfolding. A major focus of current research is the characterization of short-lived intermediates and how molecular chaperones enable productive folding. Real-time NMR spectroscopy, together with the development of advanced methods, is reviewed here and the potential these methods have to characterize intermediate states as well as interactions with molecular chaperone proteins at single-residue resolution is highlighted. SCOPE OF REVIEW Various chaperone interactions can guide the protein-folding reaction and thus are important for protein structure formation, stability, and activity of their substrates. Chaperone-assisted protein folding, characterization of intermediates, and their molecular interactions using real-time NMR spectroscopy will be discussed. Additionally, recent advances in NMR methods employed for characterization of high-energy intermediates will be discussed. MAJOR CONCLUSIONS Real-time NMR combines high resolution with kinetic information of protein reactions, which can be employed not only for protein-folding studies and the characterization of folding intermediates but also to investigate the molecular mechanisms of assisted protein folding. GENERAL SIGNIFICANCE Real-time NMR spectroscopy remains an effective tool to reveal structural details about the interaction between chaperones and transient intermediates. Methodologically, it provides in-depth understanding of how kinetic intermediates and their thermodynamics contribute to the protein-folding reaction. This review summarizes the most recent advances in this field. This article is part of a Special Issue titled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Amit Kumar
- Institut für Physik, Biophysik, und Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine (MZP), Martin-Luther Universität Halle-Wittenberg, Halle D-06120, Germany
| | - Jochen Balbach
- Institut für Physik, Biophysik, und Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine (MZP), Martin-Luther Universität Halle-Wittenberg, Halle D-06120, Germany.
| |
Collapse
|