1
|
Domżał B, Nawrocka EK, Gołowicz D, Ciach MA, Miasojedow B, Kazimierczuk K, Gambin A. Magnetstein: An Open-Source Tool for Quantitative NMR Mixture Analysis Robust to Low Resolution, Distorted Lineshapes, and Peak Shifts. Anal Chem 2024; 96:188-196. [PMID: 38117933 PMCID: PMC10782418 DOI: 10.1021/acs.analchem.3c03594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/22/2023]
Abstract
1H NMR spectroscopy is a powerful tool for analyzing mixtures including determining the concentrations of individual components. When signals from multiple compounds overlap, this task requires computational solutions. They are typically based on peak-picking and the comparison of obtained peak lists with libraries of individual components. This can fail if peaks are not sufficiently resolved or when peak positions differ between the library and the mixture. In this paper, we present Magnetstein, a quantification algorithm rooted in the optimal transport theory that makes it robust to unexpected frequency shifts and overlapping signals. Thanks to this, Magnetstein can quantitatively analyze difficult spectra with the estimation trueness an order of magnitude higher than that of commercial tools. Furthermore, the method is easier to use than other approaches, having only two parameters with default values applicable to a broad range of experiments and requiring little to no preprocessing of the spectra.
Collapse
Affiliation(s)
- Barbara Domżał
- Faculty
of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, Warsaw 02-097, Poland
| | - Ewa Klaudia Nawrocka
- Centre
of New Technologies, University of Warsaw, Banacha 2C, Warsaw 02-097, Poland
| | - Dariusz Gołowicz
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Michał Aleksander Ciach
- Faculty
of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, Warsaw 02-097, Poland
| | - Błażej Miasojedow
- Faculty
of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, Warsaw 02-097, Poland
| | | | - Anna Gambin
- Faculty
of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, Warsaw 02-097, Poland
| |
Collapse
|
2
|
Kristinaityte K, Mames A, Pietrzak M, Westermair FF, Silva W, Gschwind RM, Ratajczyk T, Urbańczyk M. Deeper Insight into Photopolymerization: The Synergy of Time-Resolved Nonuniform Sampling and Diffusion NMR. J Am Chem Soc 2022; 144:13938-13945. [PMID: 35852987 PMCID: PMC9354252 DOI: 10.1021/jacs.2c05944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Indexed: 11/28/2022]
Abstract
The comprehensive real-time in situ monitoring of chemical processes is a crucial requirement for the in-depth understanding of these processes. This monitoring facilitates an efficient design of chemicals and materials with the precise properties that are desired. This work presents the simultaneous utilization and synergy of two novel time-resolved NMR methods, i.e., time-resolved diffusion NMR and time-resolved nonuniform sampling. The first method allows the average diffusion coefficient of the products to be followed, while the second method enables the particular products to be monitored. Additionally, the average mass of the system is calculated with excellent resolution using both techniques. Employing both methods at the same time and comparing their results leads to the unequivocal validation of the assignment in the second method. Importantly, such validation is possible only via the simultaneous combination of both approaches. While the presented methodology was utilized for photopolymerization, it can also be employed for any other polymerization process, complexation, or, in general, chemical reactions in which the evolution of mass in time is of importance.
Collapse
Affiliation(s)
- Kristina Kristinaityte
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Adam Mames
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Mariusz Pietrzak
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Franz F. Westermair
- Faculty
of Chemistry and Pharmacy, Univeristy of
Regensburg, Universitätsstraßze 31, 93053 Regensburg, Germany
| | - Wagner Silva
- Faculty
of Chemistry and Pharmacy, Univeristy of
Regensburg, Universitätsstraßze 31, 93053 Regensburg, Germany
| | - Ruth M. Gschwind
- Faculty
of Chemistry and Pharmacy, Univeristy of
Regensburg, Universitätsstraßze 31, 93053 Regensburg, Germany
| | - Tomasz Ratajczyk
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Mateusz Urbańczyk
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
3
|
Telkki VV, Urbańczyk M, Zhivonitko V. Ultrafast methods for relaxation and diffusion. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 126-127:101-120. [PMID: 34852922 DOI: 10.1016/j.pnmrs.2021.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Relaxation and diffusion NMR measurements offer an approach to studying rotational and translational motion of molecules non-invasively, and they also provide chemical resolution complementary to NMR spectra. Multidimensional experiments enable the correlation of relaxation and diffusion parameters as well as the observation of molecular exchange phenomena through relaxation or diffusion contrast. This review describes how to accelerate multidimensional relaxation and diffusion measurements significantly through spatial encoding. This so-called ultrafast Laplace NMR approach shortens the experiment time to a fraction and makes even single-scan experiments possible. Single-scan experiments, in turn, significantly facilitate the use of nuclear spin hyperpolarization methods to boost sensitivity. The ultrafast Laplace NMR method is also applicable with low-field, mobile NMR instruments, and it can be exploited in many disciplines. For example, it has been used in studies of the dynamics of fluids in porous materials, identification of intra- and extracellular metabolites in cancer cells, and elucidation of aggregation phenomena in atmospheric surfactant solutions.
Collapse
Affiliation(s)
| | - Mateusz Urbańczyk
- NMR Research Unit, University of Oulu, P.O. Box 3000, FIN-90014, Finland; Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | | |
Collapse
|
4
|
Wernersson S, Carlström G, Jakobsson A, Akke M. Rapid measurement of heteronuclear transverse relaxation rates using non-uniformly sampled R1ρ accordion experiments. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:571-587. [PMID: 37905216 PMCID: PMC10539792 DOI: 10.5194/mr-2-571-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/28/2021] [Indexed: 11/01/2023]
Abstract
Multidimensional, heteronuclear NMR relaxation methods are used extensively to characterize the dynamics of biological macromolecules. Acquisition of relaxation datasets on proteins typically requires significant measurement time, often several days. Accordion spectroscopy offers a powerful means to shorten relaxation rate measurements by encoding the "relaxation dimension" into the indirect evolution period in multidimensional experiments. Time savings can also be achieved by non-uniform sampling (NUS) of multidimensional NMR data, which is used increasingly to improve spectral resolution or increase sensitivity per unit time. However, NUS is not commonly implemented in relaxation experiments, because most reconstruction algorithms are inherently nonlinear, leading to problems when estimating signal intensities, relaxation rate constants and their error bounds. We have previously shown how to avoid these shortcomings by combining accordion spectroscopy with NUS, followed by data reconstruction using sparse exponential mode analysis, thereby achieving a dramatic decrease in the total length of longitudinal relaxation experiments. Here, we present the corresponding transverse relaxation experiment, taking into account the special considerations required for its successful implementation in the framework of the accordion-NUS approach. We attain the highest possible precision in the relaxation rate constants by optimizing the NUS scheme with respect to the Cramér-Rao lower bound of the variance of the estimated parameter, given the total number of sampling points and the spectrum-specific signal characteristics. The resulting accordion-NUS R 1 ρ relaxation experiment achieves comparable precision in the parameter estimates compared to conventional CPMG (Carr-Purcell-Meiboom-Gill) R 2 or spin-lock R 1 ρ experiments while saving an order of magnitude in experiment time.
Collapse
Affiliation(s)
- Sven Wernersson
- Biophysical Chemistry, Center for Molecular Protein Science,
Department of Chemistry, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Göran Carlström
- Centre for Analysis and Synthesis, Department of Chemistry, Lund
University, P.O. Box 124, 22100 Lund, Sweden
| | - Andreas Jakobsson
- Department of Mathematical Statistics, Lund University, P.O. Box 118,
22100 Lund, Sweden
| | - Mikael Akke
- Biophysical Chemistry, Center for Molecular Protein Science,
Department of Chemistry, Lund University, P.O. Box 124, 22100 Lund, Sweden
| |
Collapse
|
5
|
East KW, Delaglio F, Lisi GP. A simple approach for reconstruction of non-uniformly sampled pseudo-3D NMR data for accurate measurement of spin relaxation parameters. JOURNAL OF BIOMOLECULAR NMR 2021; 75:213-219. [PMID: 33961178 PMCID: PMC8686007 DOI: 10.1007/s10858-021-00369-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
We explain how to conduct a pseudo-3D relaxation series NUS measurement so that it can be reconstructed by existing 3D NUS reconstruction methods to give accurate relaxation values. We demonstrate using reconstruction algorithms IST and SMILE that this 3D approach allows lower sampling densities than for independent 2D reconstructions. This is in keeping with the common finding that higher dimensionality increases signal sparsity, enabling lower sampling density. The approach treats the relaxation series as ordinary 3D time-domain data whose imaginary part in the pseudo-dimension is zero, and applies any suitably linear 3D NUS reconstruction method accordingly. Best results on measured and simulated data were achieved using acquisitions with 9 to 12 planes and exponential spacing in the pseudo-dimension out to ~ 2 times the inverse decay time. Given these criteria, in typical cases where 2D reconstructions require 50% sampling, the new 3D approach generates spectra reliably at sampling densities of 25%.
Collapse
Affiliation(s)
- Kyle W East
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA
| | - Frank Delaglio
- Institute of Bioscience and Biotechnology Research, National Institute of Standards and Technology, The University of Maryland, 9600 Gudelsky Dr. Rockville, College Park, MD, 20850, USA
| | - George P Lisi
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA.
| |
Collapse
|
6
|
Srivastava DJ, Grandinetti PJ. Statistical learning of NMR tensors from 2D isotropic/anisotropic correlation nuclear magnetic resonance spectra. J Chem Phys 2020; 153:134201. [PMID: 33032428 DOI: 10.1063/5.0023345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many linear inversion problems involving Fredholm integrals of the first kind are frequently encountered in the field of magnetic resonance. One important application is the direct inversion of a solid-state nuclear magnetic resonance (NMR) spectrum containing multiple overlapping anisotropic subspectra to obtain a distribution of the tensor parameters. Because of the ill-conditioned nature of this inverse problem, we investigate the use of the truncated singular value decomposition and the smooth least absolute shrinkage and selection operator based regularization methods, which (a) stabilize the solution and (b) promote sparsity and smoothness in the solution. We also propose an unambiguous representation for the anisotropy parameters using a piecewise polar coordinate system to minimize rank deficiency in the inversion kernel. To obtain the optimum tensor parameter distribution, we implement the k-fold cross-validation, a statistical learning method, to determine the hyperparameters of the regularized inverse problem. In this article, we provide the details of the linear-inversion method along with numerous illustrative applications on purely anisotropic NMR spectra, both synthetic and experimental two-dimensional spectra correlating the isotropic and anisotropic frequencies.
Collapse
Affiliation(s)
- Deepansh J Srivastava
- Department of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | - Philip J Grandinetti
- Department of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| |
Collapse
|
7
|
Urbańczyk M, Kharbanda Y, Mankinen O, Telkki VV. Accelerating Restricted Diffusion NMR Studies with Time-Resolved and Ultrafast Methods. Anal Chem 2020; 92:9948-9955. [PMID: 32551510 PMCID: PMC7439255 DOI: 10.1021/acs.analchem.0c01523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Restricted
diffusion of fluids in porous materials can be studied
by pulsed field gradient nuclear magnetic resonance (NMR) non-invasively
and without tracers. If the experiment is repeated many times with
varying diffusion delays, detailed information about pore sizes and
tortuosity can be recorded. However, the measurements are very time-consuming
because numerous repetitions are needed for gradient ramping and varying
diffusion delays. In this paper, we demonstrate two different strategies
for acceleration of the restricted diffusion NMR measurements: time-resolved
diffusion NMR and ultrafast Laplace NMR. The former is based on time-resolved
non-uniform sampling, while the latter relies on spatial encoding
of two-dimensional data. Both techniques allow similar 1–2
order of magnitude acceleration of acquisition, but they have different
strengths and weaknesses, which we discuss in detail. The feasibility
of the methods was proven by investigating restricted diffusion of
water inside tracheid cells of thermally modified pine wood.
Collapse
Affiliation(s)
| | | | - Otto Mankinen
- NMR Research Unit, University of Oulu, 90014 Oulu, Finland.,Oulu Functional NeuroImaging Group, Research Unit of Medical Imaging, Physics and Technology, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, 90029 Oulu, Finland
| | | |
Collapse
|
8
|
Gołowicz D, Kasprzak P, Orekhov V, Kazimierczuk K. Fast time-resolved NMR with non-uniform sampling. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 116:40-55. [PMID: 32130958 DOI: 10.1016/j.pnmrs.2019.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
NMR spectroscopy is a versatile tool for studying time-dependent processes: chemical reactions, phase transitions or macromolecular structure changes. However, time-resolved NMR is usually based on the simplest among available techniques - one-dimensional spectra serving as "snapshots" of the studied process. One of the reasons is that multidimensional experiments are very time-expensive due to costly sampling of evolution time space. In this review we summarize efforts to alleviate the problem of limited applicability of multidimensional NMR in time-resolved studies. We focus on techniques based on sparse or non-uniform sampling (NUS), which lead to experimental time reduction by omitting a significant part of the data during measurement and reconstructing it mathematically, adopting certain assumptions about the spectrum. NUS spectra are faster to acquire than conventional ones and thus better suited to the role of "snapshots", but still suffer from non-stationarity of the signal i.e. amplitude and frequency variations within a dataset. We discuss in detail how these instabilities affect the spectra, and what are the optimal ways of sampling the non-stationary FID signal. Finally, we discuss related areas of NMR where serial experiments are exploited and how they can benefit from the same NUS-based approaches.
Collapse
Affiliation(s)
- Dariusz Gołowicz
- Centre of New Technologies, University of Warsaw, Banacha 2C, Warsaw 02-097, Poland; Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland.
| | - Paweł Kasprzak
- Centre of New Technologies, University of Warsaw, Banacha 2C, Warsaw 02-097, Poland; Department of Mathematical Methods in Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.
| | - Vladislav Orekhov
- Department of Chemistry & Molecular Biology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden.
| | | |
Collapse
|
9
|
Rovny J, Blum RL, Loria JP, Barrett SE. Accelerating 2D NMR relaxation dispersion experiments using iterated maps. JOURNAL OF BIOMOLECULAR NMR 2019; 73:561-576. [PMID: 31280454 PMCID: PMC7370911 DOI: 10.1007/s10858-019-00263-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/19/2019] [Indexed: 05/08/2023]
Abstract
NMR relaxation dispersion experiments play a central role in exploring molecular motion over an important range of timescales, and are an example of a broader class of multidimensional NMR experiments that probe important biomolecules. However, resolving the spectral features of these experiments using the Fourier transform requires sampling the full Nyquist grid of data, making these experiments very costly in time. Practitioners often reduce the experiment time by omitting 1D experiments in the indirectly observed dimensions, and reconstructing the spectra using one of a variety of post-processing algorithms. In prior work, we described a fast, Fourier-based reconstruction method using iterated maps according to the Difference Map algorithm of Veit Elser (DiffMap). Here we describe coDiffMap, a new reconstruction method that is based on DiffMap, but which exploits the strong correlations between 2D data slices in a pseudo-3D experiment. We apply coDiffMap to reconstruct dispersion curves from an [Formula: see text] relaxation dispersion experiment, and demonstrate that the method provides fast reconstructions and accurate relaxation curves down to very low numbers of sparsely-sampled data points.
Collapse
Affiliation(s)
- Jared Rovny
- Department of Physics, Yale University, 217 Prospect St., New Haven, CT, 06511, USA
| | - Robert L Blum
- Department of Physics, Yale University, 217 Prospect St., New Haven, CT, 06511, USA
| | - J Patrick Loria
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT, 06511, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, 225 Prospect St., New Haven, CT, 06511, USA
| | - Sean E Barrett
- Department of Physics, Yale University, 217 Prospect St., New Haven, CT, 06511, USA.
| |
Collapse
|