1
|
Blake Wilson C, Tycko R. Optimization of 15N- 13C double-resonance NMR experiments under low temperature magic angle spinning dynamic nuclear polarization conditions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 368:107783. [PMID: 39383594 PMCID: PMC11573627 DOI: 10.1016/j.jmr.2024.107783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Dynamic nuclear polarization (DNP) enhanced magic angle spinning (MAS) solid-state NMR carried out at 25 K enables rapid acquisition of multi-dimensional 13C-15N correlation spectra for protein structure studies and resonance assignment. Under commonly used DNP conditions, solvent deuteration reduces 1H-15N cross polarization (CP) efficiencies, necessitates more careful optimization, and requires longer high-power 15N radio-frequency pulses. The sensitivity of 2D heteronuclear correlation experiments is potentially impaired. Here we show that 2D 15N-13C experiments based on 13C-15N transferred echo double resonance (TEDOR) methods outperform 2D experiments based on CP transfers in a fully deuterated solvent, and are competitive with CP-based experiments when the solvent is only partially deuterated. Additionally, we show that optimization of TEDOR-based 2D experiments is simpler than optimization of CP-based experiments under 25 K MAS conditions.
Collapse
Affiliation(s)
- C Blake Wilson
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, U.S.A
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, U.S.A.
| |
Collapse
|
2
|
Bhai L, Thomas JK, Conroy DW, Xu Y, Al-Hashimi HM, Jaroniec CP. Hydrogen bonding in duplex DNA probed by DNP enhanced solid-state NMR N-H bond length measurements. Front Mol Biosci 2023; 10:1286172. [PMID: 38111464 PMCID: PMC10726973 DOI: 10.3389/fmolb.2023.1286172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/09/2023] [Indexed: 12/20/2023] Open
Abstract
Numerous biological processes and mechanisms depend on details of base pairing and hydrogen bonding in DNA. Hydrogen bonds are challenging to quantify by X-ray crystallography and cryo-EM due to difficulty of visualizing hydrogen atom locations but can be probed with site specificity by NMR spectroscopy in solution and the solid state with the latter particularly suited to large, slowly tumbling DNA complexes. Recently, we showed that low-temperature dynamic nuclear polarization (DNP) enhanced solid-state NMR is a valuable tool for distinguishing Hoogsteen base pairs (bps) from canonical Watson-Crick bps in various DNA systems under native-like conditions. Here, using a model 12-mer DNA duplex containing two central adenine-thymine (A-T) bps in either Watson-Crick or Hoogsteen confirmation, we demonstrate DNP solid-state NMR measurements of thymine N3-H3 bond lengths, which are sensitive to details of N-H···N hydrogen bonding and permit hydrogen bonds for the two bp conformers to be systematically compared within the same DNA sequence context. For this DNA duplex, effectively identical TN3-H3 bond lengths of 1.055 ± 0.011 Å and 1.060 ± 0.011 Å were found for Watson-Crick A-T and Hoogsteen A (syn)-T base pairs, respectively, relative to a reference amide bond length of 1.015 ± 0.010 Å determined for N-acetyl-valine under comparable experimental conditions. Considering that prior quantum chemical calculations which account for zero-point motions predict a somewhat longer effective peptide N-H bond length of 1.041 Å, in agreement with solution and solid-state NMR studies of peptides and proteins at ambient temperature, to facilitate direct comparisons with these earlier studies TN3-H3 bond lengths for the DNA samples can be readily scaled appropriately to yield 1.083 Å and 1.087 Å for Watson-Crick A-T and Hoogsteen A (syn)-T bps, respectively, relative to the 1.041 Å reference peptide N-H bond length. Remarkably, in the context of the model DNA duplex, these results indicate that there are no significant differences in N-H···N A-T hydrogen bonds between Watson-Crick and Hoogsteen bp conformers. More generally, high precision measurements of N-H bond lengths by low-temperature DNP solid-state NMR based methods are expected to facilitate detailed comparative analysis of hydrogen bonding for a range of DNA complexes and base pairing environments.
Collapse
Affiliation(s)
- Lakshmi Bhai
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Justin K. Thomas
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Daniel W. Conroy
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Yu Xu
- Department of Chemistry, Duke University, Durham, NC, United States
| | - Hashim M. Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| | - Christopher P. Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
3
|
Middleton DA, Griffin J, Esmann M, Fedosova NU. Solid-state NMR chemical shift analysis for determining the conformation of ATP bound to Na,K-ATPase in its native membrane. RSC Adv 2023; 13:34836-34846. [PMID: 38035247 PMCID: PMC10685339 DOI: 10.1039/d3ra06236h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
Structures of membrane proteins determined by X-ray crystallography and, increasingly, by cryo-electron microscopy often fail to resolve the structural details of unstable or reactive small molecular ligands in their physiological sites. This work demonstrates that 13C chemical shifts measured by magic-angle spinning (MAS) solid-state NMR (SSNMR) provide unique information on the conformation of a labile ligand in the physiological site of a functional protein in its native membrane, by exploiting freeze-trapping to stabilise the complex. We examine the ribose conformation of ATP in a high affinity complex with Na,K-ATPase (NKA), an enzyme that rapidly hydrolyses ATP to ADP and inorganic phosphate under physiological conditions. The 13C SSNMR spectrum of the frozen complex exhibits peaks from all ATP ribose carbon sites and some adenine base carbons. Comparison of experimental chemical shifts with density functional theory (DFT) calculations of ATP in different conformations and protein environments reveals that the ATP ribose ring adopts an C3'-endo (N) conformation when bound with high affinity to NKA in the E1Na state, in contrast to the C2'-endo (S) ribose conformations of ATP bound to the E2P state and AMPPCP in the E1 complex. Additional dipolar coupling-mediated measurements of H-C-C-H torsional angles are used to eliminate possible relative orientations of the ribose and adenine rings. The utilization of chemical shifts to determine membrane protein ligand conformations has been underexploited to date and here we demonstrate this approach to be a powerful tool for resolving the fine details of ligand-protein interactions.
Collapse
Affiliation(s)
- David A Middleton
- Department of Chemistry, Lancaster University Bailrigg Lancaster LA1 4YB UK +44 (0)1524 594328
| | - John Griffin
- Department of Chemistry, Lancaster University Bailrigg Lancaster LA1 4YB UK +44 (0)1524 594328
| | - Mikael Esmann
- Department of Biomedicine, Aarhus University Aarhus Denmark
| | | |
Collapse
|
4
|
Chen PH, Gao C, Alaniva N, Björgvinsdóttir S, Pagonakis IG, Urban MA, Däpp A, Gunzenhauser R, Barnes AB. Watch-sized 12 Tesla all-high-temperature-superconducting magnet. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 357:107588. [PMID: 37976810 DOI: 10.1016/j.jmr.2023.107588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
We demonstrate the construction of 7 Tesla and 12 Tesla all high-temperature-superconducting (HTS) magnets, small enough to fit on your wrist. The size of the magnet reduces the cost of fabrication, decreases the fringe field to permit facile siting of magnets, and decreases the stored energy of high field magnets. These small HTS-based magnets are being developed for gyrotron microwave sources for use in high-field nuclear magnetic resonance applications. The 7 Tesla and 12 Tesla magnets employ a no-insulation winding technique and are cooled to 4.2 Kelvin in a liquid helium cryostat. The 7 Tesla magnet is a single pancake coil, made of only 9.4 m of HTS tape, with an inner diameter of 8 mm and an outer diameter of 24 mm. This magnet was charged up to 1168 Amperes, generating a field of 7.3 Tesla. The 12 Tesla magnet is comprised of two pancake coils (inner diameter of 10 mm and outer diameter of 27 mm) connected in series. This magnet reached its maximum field at a current of 850 Amperes.
Collapse
Affiliation(s)
- Pin-Hui Chen
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2 8093, Zürich, Switzerland.
| | - Chukun Gao
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2 8093, Zürich, Switzerland
| | - Nicholas Alaniva
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2 8093, Zürich, Switzerland
| | - Snædís Björgvinsdóttir
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2 8093, Zürich, Switzerland
| | - Ioannis Gr Pagonakis
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2 8093, Zürich, Switzerland
| | - Michael A Urban
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2 8093, Zürich, Switzerland
| | - Alexander Däpp
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2 8093, Zürich, Switzerland
| | - Ronny Gunzenhauser
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2 8093, Zürich, Switzerland
| | - Alexander B Barnes
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2 8093, Zürich, Switzerland.
| |
Collapse
|
5
|
Aguion PI, Marchanka A, Carlomagno T. Nucleic acid-protein interfaces studied by MAS solid-state NMR spectroscopy. J Struct Biol X 2022; 6:100072. [PMID: 36090770 PMCID: PMC9449856 DOI: 10.1016/j.yjsbx.2022.100072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Solid-state NMR (ssNMR) has become a well-established technique to study large and insoluble protein assemblies. However, its application to nucleic acid-protein complexes has remained scarce, mainly due to the challenges presented by overlapping nucleic acid signals. In the past decade, several efforts have led to the first structure determination of an RNA molecule by ssNMR. With the establishment of these tools, it has become possible to address the problem of structure determination of nucleic acid-protein complexes by ssNMR. Here we review first and more recent ssNMR methodologies that study nucleic acid-protein interfaces by means of chemical shift and peak intensity perturbations, direct distance measurements and paramagnetic effects. At the end, we review the first structure of an RNA-protein complex that has been determined from ssNMR-derived intermolecular restraints.
Collapse
Affiliation(s)
- Philipp Innig Aguion
- Institute for Organic Chemistry and Centre of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Alexander Marchanka
- Institute for Organic Chemistry and Centre of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Teresa Carlomagno
- School of Biosciences/College of Life and Enviromental Sciences, Institute of Cancer and Genomic Sciences/College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
6
|
Conroy DW, Xu Y, Shi H, Gonzalez Salguero N, Purusottam RN, Shannon MD, Al-Hashimi HM, Jaroniec CP. Probing Watson-Crick and Hoogsteen base pairing in duplex DNA using dynamic nuclear polarization solid-state NMR spectroscopy. Proc Natl Acad Sci U S A 2022; 119:e2200681119. [PMID: 35857870 PMCID: PMC9335254 DOI: 10.1073/pnas.2200681119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The majority of base pairs in double-stranded DNA exist in the canonical Watson-Crick geometry. However, they can also adopt alternate Hoogsteen conformations in various complexes of DNA with proteins and small molecules, which are key for biological function and mechanism. While detection of Hoogsteen base pairs in large DNA complexes and assemblies poses considerable challenges for traditional structural biology techniques, we show here that multidimensional dynamic nuclear polarization-enhanced solid-state NMR can serve as a unique spectroscopic tool for observing and distinguishing Watson-Crick and Hoogsteen base pairs in a broad range of DNA systems based on characteristic NMR chemical shifts and internuclear dipolar couplings. We illustrate this approach using a model 12-mer DNA duplex, free and in complex with the antibiotic echinomycin, which features two central adenine-thymine base pairs with Watson-Crick and Hoogsteen geometry, respectively, and subsequently extend it to the ∼200 kDa Widom 601 DNA nucleosome core particle.
Collapse
Affiliation(s)
- Daniel W. Conroy
- aDepartment of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Yu Xu
- bDepartment of Chemistry, Duke University, Durham, NC 27708
| | - Honglue Shi
- bDepartment of Chemistry, Duke University, Durham, NC 27708
| | | | - Rudra N. Purusottam
- aDepartment of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Matthew D. Shannon
- aDepartment of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Hashim M. Al-Hashimi
- bDepartment of Chemistry, Duke University, Durham, NC 27708
- cDepartment of Biochemistry, Duke University Medical Center, Durham, NC 27710
- dDepartment of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
- 1To whom correspondence may be addressed. or
| | - Christopher P. Jaroniec
- aDepartment of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
- 1To whom correspondence may be addressed. or
| |
Collapse
|
7
|
Harati Taji Z, Bielytskyi P, Shein M, Sani MA, Seitz S, Schütz AK. Transient RNA Interactions Leave a Covalent Imprint on a Viral Capsid Protein. J Am Chem Soc 2022; 144:8536-8550. [PMID: 35512333 PMCID: PMC9121876 DOI: 10.1021/jacs.1c12439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The hepatitis B virus (HBV) is the leading cause of persistent liver infections. Its DNA-based genome is synthesized through reverse transcription of an RNA template inside the assembled capsid shell. In addition to the structured assembly domain, the capsid protein harbors a C-terminal extension that mediates both the enclosure of RNA during capsid assembly and the nuclear entry of the capsid during infection. The arginine-rich motifs within this extension, though common to many viruses, have largely escaped atomic-scale investigation. Here, we leverage solution and solid-state nuclear magnetic resonance spectroscopy at ambient and cryogenic temperatures, under dynamic nuclear polarization signal enhancement, to investigate the organization of the genome within the capsid. Transient interactions with phosphate groups of the RNA backbone confine the arginine-rich motifs to the interior capsid space. While no secondary structure is induced in the C-terminal extension, interactions with RNA counteract the formation of a disulfide bond, which covalently tethers this peptide arm onto the inner capsid surface. Electrostatic and covalent contributions thus compete in the spatial regulation of capsid architecture. This disulfide switch represents a coupling mechanism between the structured assembly domain of the capsid and the enclosed nucleic acids. In particular, it enables the redox-dependent regulation of the exposure of the C-terminal extension on the capsid surface, which is required for nuclear uptake of the capsid. Phylogenetic analysis of capsid proteins from hepadnaviruses points toward a function of this switch in the persistence of HBV infections.
Collapse
Affiliation(s)
- Zahra Harati Taji
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching 85748, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Pavlo Bielytskyi
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching 85748, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Mikhail Shein
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching 85748, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Marc-Antoine Sani
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Stefan Seitz
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg 69120, Germany.,Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Anne K Schütz
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching 85748, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| |
Collapse
|
8
|
Chow WY, De Paëpe G, Hediger S. Biomolecular and Biological Applications of Solid-State NMR with Dynamic Nuclear Polarization Enhancement. Chem Rev 2022; 122:9795-9847. [PMID: 35446555 DOI: 10.1021/acs.chemrev.1c01043] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Solid-state NMR spectroscopy (ssNMR) with magic-angle spinning (MAS) enables the investigation of biological systems within their native context, such as lipid membranes, viral capsid assemblies, and cells. However, such ambitious investigations often suffer from low sensitivity due to the presence of significant amounts of other molecular species, which reduces the effective concentration of the biomolecule or interaction of interest. Certain investigations requiring the detection of very low concentration species remain unfeasible even with increasing experimental time for signal averaging. By applying dynamic nuclear polarization (DNP) to overcome the sensitivity challenge, the experimental time required can be reduced by orders of magnitude, broadening the feasible scope of applications for biological solid-state NMR. In this review, we outline strategies commonly adopted for biological applications of DNP, indicate ongoing challenges, and present a comprehensive overview of biological investigations where MAS-DNP has led to unique insights.
Collapse
Affiliation(s)
- Wing Ying Chow
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France.,Univ. Grenoble Alpes, CEA, CNRS, Inst. Biol. Struct. IBS, 38044 Grenoble, France
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France
| | - Sabine Hediger
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France
| |
Collapse
|
9
|
Biedenbänder T, Aladin V, Saeidpour S, Corzilius B. Dynamic Nuclear Polarization for Sensitivity Enhancement in Biomolecular Solid-State NMR. Chem Rev 2022; 122:9738-9794. [PMID: 35099939 DOI: 10.1021/acs.chemrev.1c00776] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Solid-state NMR with magic-angle spinning (MAS) is an important method in structural biology. While NMR can provide invaluable information about local geometry on an atomic scale even for large biomolecular assemblies lacking long-range order, it is often limited by low sensitivity due to small nuclear spin polarization in thermal equilibrium. Dynamic nuclear polarization (DNP) has evolved during the last decades to become a powerful method capable of increasing this sensitivity by two to three orders of magnitude, thereby reducing the valuable experimental time from weeks or months to just hours or days; in many cases, this allows experiments that would be otherwise completely unfeasible. In this review, we give an overview of the developments that have opened the field for DNP-enhanced biomolecular solid-state NMR including state-of-the-art applications at fast MAS and high magnetic field. We present DNP mechanisms, polarizing agents, and sample constitution methods suitable for biomolecules. A wide field of biomolecular NMR applications is covered including membrane proteins, amyloid fibrils, large biomolecular assemblies, and biomaterials. Finally, we present perspectives and recent developments that may shape the field of biomolecular DNP in the future.
Collapse
Affiliation(s)
- Thomas Biedenbänder
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Victoria Aladin
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Siavash Saeidpour
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Björn Corzilius
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
10
|
ATP Analogues for Structural Investigations: Case Studies of a DnaB Helicase and an ABC Transporter. Molecules 2020; 25:molecules25225268. [PMID: 33198135 PMCID: PMC7698047 DOI: 10.3390/molecules25225268] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022] Open
Abstract
Nucleoside triphosphates (NTPs) are used as chemical energy source in a variety of cell systems. Structural snapshots along the NTP hydrolysis reaction coordinate are typically obtained by adding stable, nonhydrolyzable adenosine triphosphate (ATP) -analogues to the proteins, with the goal to arrest a state that mimics as closely as possible a physiologically relevant state, e.g., the pre-hydrolytic, transition and post-hydrolytic states. We here present the lessons learned on two distinct ATPases on the best use and unexpected pitfalls observed for different analogues. The proteins investigated are the bacterial DnaB helicase from Helicobacter pylori and the multidrug ATP binding cassette (ABC) transporter BmrA from Bacillus subtilis, both belonging to the same division of P-loop fold NTPases. We review the magnetic-resonance strategies which can be of use to probe the binding of the ATP-mimics, and present carbon-13, phosphorus-31, and vanadium-51 solid-state nuclear magnetic resonance (NMR) spectra of the proteins or the bound molecules to unravel conformational and dynamic changes upon binding of the ATP-mimics. Electron paramagnetic resonance (EPR), and in particular W-band electron-electron double resonance (ELDOR)-detected NMR, is of complementary use to assess binding of vanadate. We discuss which analogues best mimic the different hydrolysis states for the DnaB helicase and the ABC transporter BmrA. These might be relevant also to structural and functional studies of other NTPases.
Collapse
|
11
|
Wiegand T. A solid-state NMR tool box for the investigation of ATP-fueled protein engines. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 117:1-32. [PMID: 32471533 DOI: 10.1016/j.pnmrs.2020.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 06/11/2023]
Abstract
Motor proteins are involved in a variety of cellular processes. Their main purpose is to convert the chemical energy released during adenosine triphosphate (ATP) hydrolysis into mechanical work. In this review, solid-state Nuclear Magnetic Resonance (NMR) approaches are discussed allowing studies of structures, conformational events and dynamic features of motor proteins during a variety of enzymatic reactions. Solid-state NMR benefits from straightforward sample preparation based on sedimentation of the proteins directly into the Magic-Angle Spinning (MAS) rotor. Protein resonance assignment is the crucial and often time-limiting step in interpreting the wealth of information encoded in the NMR spectra. Herein, potentials, challenges and limitations in resonance assignment for large motor proteins are presented, focussing on both biochemical and spectroscopic approaches. This work highlights NMR tools available to study the action of the motor domain and its coupling to functional processes, as well as to identify protein-nucleotide interactions during events such as DNA replication. Arrested protein states of reaction coordinates such as ATP hydrolysis can be trapped for NMR studies by using stable, non-hydrolysable ATP analogues that mimic the physiological relevant states as accurately as possible. Recent advances in solid-state NMR techniques ranging from Dynamic Nuclear Polarization (DNP), 31P-based heteronuclear correlation experiments, 1H-detected spectra at fast MAS frequencies >100 kHz to paramagnetic NMR are summarized and their applications to the bacterial DnaB helicase from Helicobacter pylori are discussed.
Collapse
Affiliation(s)
- Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
12
|
Tanaka S, Liao WC, Ogawa A, Sato K, Copéret C. DNP NMR spectroscopy of cross-linked organic polymers: rational guidelines towards optimal sample preparation. Phys Chem Chem Phys 2020; 22:3184-3190. [PMID: 31858098 DOI: 10.1039/c9cp05208a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cross-linked polystyrenes (PS) are an important class of polymers, whose properties are strongly dependent on incorporated functionalities, for which detailed understanding of their structure remains a challenge. Here, we develop a rational guideline for dynamic nuclear polarization (DNP) sample formulation for cross-linked PS to interrogate their structure. We show that the DNP enhancement on a series of cross-linked PS bearing alkylammonium groups as prototypical organic polymers correlates with the polymer swelling properties in both apolar and polar formulations (TEKPol/1,1,2,2-tetrachloroethane and AMUPol/dimethyl sulfoxide). This work provides guidelines to easily optimize DNP formulation using a simple swelling test and enables natural abundance 15N NMR to be recorded on a series of PS-supported quaternary alkylammonium salts, allowing a detailed structural analysis.
Collapse
Affiliation(s)
- Shinji Tanaka
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology, 305-8565, Tsukuba, Japan.
| | | | | | | | | |
Collapse
|
13
|
Mandala VS, Hong M. High-sensitivity protein solid-state NMR spectroscopy. Curr Opin Struct Biol 2019; 58:183-190. [PMID: 31031067 PMCID: PMC6778492 DOI: 10.1016/j.sbi.2019.03.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 03/17/2019] [Accepted: 03/21/2019] [Indexed: 10/27/2022]
Abstract
The sensitivity of solid-state nuclear magnetic resonance (SSNMR) spectroscopy for structural biology is significantly increased by 1H detection under fast magic-angle spinning (MAS) and by dynamic nuclear polarization (DNP) from electron spins to nuclear spins. The former allows studies of the structure and dynamics of small quantities of proteins under physiological conditions, while the latter permits studies of large biomolecular complexes in lipid membranes and cells, protein intermediates, and protein conformational distributions. We highlight recent applications of these two emerging SSNMR technologies and point out areas for future development.
Collapse
Affiliation(s)
- Venkata S Mandala
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States.
| |
Collapse
|
14
|
Kaur H, Abreu B, Akhmetzyanov D, Lakatos-Karoly A, Soares CM, Prisner T, Glaubitz C. Unexplored Nucleotide Binding Modes for the ABC Exporter MsbA. J Am Chem Soc 2018; 140:14112-14125. [PMID: 30289253 DOI: 10.1021/jacs.8b06739] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The ATP-binding cassette (ABC) transporter MsbA is an ATP-driven lipid-A flippase. It belongs to the ABC protein superfamily whose members are characterized by conserved motifs in their nucleotide binding domains (NBDs), which are responsible for ATP hydrolysis. Recently, it was found that MsbA could catalyze a reverse adenylate kinase (rAK)-like reaction in addition to ATP hydrolysis. Both reactions are connected and mediated by the same conserved NBD domains. Here, the structural foundations underlying the nucleotide binding to MsbA were therefore explored using a concerted approach based on conventional- and DNP-enhanced solid-state NMR, pulsed-EPR, and MD simulations. MsbA reconstituted into lipid bilayers was trapped in various catalytic states corresponding to intermediates of the coupled ATPase-rAK mechanism. The analysis of nucleotide-binding dependent chemical shift changes, and the detection of through-space contacts between bound nucleotides and MsbA within these states provides evidence for an additional nucleotide-binding site in close proximity to the Q-loop and the His-Switch. By replacing Mg2+ with Mn2+ and employing pulsed EPR spectroscopy, evidence is provided that this newly found nucleotide binding site does not interfere with the coordination of the required metal ion. Molecular dynamic (MD) simulations of nucleotide and metal binding required for the coupled ATPase-rAK mechanism have been used to corroborate these experimental findings and provide additional insight into nucleotide location, orientation, and possible binding modes.
Collapse
Affiliation(s)
- Hundeep Kaur
- Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance , Goethe-University Frankfurt , 60438 Frankfurt , Germany
| | - Bárbara Abreu
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier , Universidade Nova de Lisboa , 2780-157 Oeiras , Portugal
| | - Dmitry Akhmetzyanov
- Institute for Physical and Theoretical Chemistry & Centre for Biomolecular Magnetic Resonance , Goethe-University Frankfurt , 60438 Frankfurt , Germany
| | - Andrea Lakatos-Karoly
- Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance , Goethe-University Frankfurt , 60438 Frankfurt , Germany
| | - Cláudio M Soares
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier , Universidade Nova de Lisboa , 2780-157 Oeiras , Portugal
| | - Thomas Prisner
- Institute for Physical and Theoretical Chemistry & Centre for Biomolecular Magnetic Resonance , Goethe-University Frankfurt , 60438 Frankfurt , Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance , Goethe-University Frankfurt , 60438 Frankfurt , Germany
| |
Collapse
|
15
|
Can TV, McKay JE, Weber RT, Yang C, Dubroca T, van Tol J, Hill S, Griffin RG. Frequency-Swept Integrated and Stretched Solid Effect Dynamic Nuclear Polarization. J Phys Chem Lett 2018; 9:3187-3192. [PMID: 29756781 PMCID: PMC8253171 DOI: 10.1021/acs.jpclett.8b01002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We investigate a new time domain approach to dynamic nuclear polarization (DNP), the frequency-swept integrated solid effect (FS-ISE), utilizing a high power, broadband 94 GHz (3.35 T) pulse EPR spectrometer. The bandwidth of the spectrometer enabled measurement of the DNP Zeeman frequency/field profile that revealed two dominant polarization mechanisms, the expected ISE, and a recently observed mechanism, the stretched solid effect (S2E). At 94 GHz, despite the limitations in the microwave chirp pulse length (10 μs) and the repetition rate (2 kHz), we obtained signal enhancements up to ∼70 for the S2E and ∼50 for the ISE. The results successfully demonstrate the viability of the FS-ISE and S2E DNP at a frequency 10 times higher than previous studies. Our results also suggest that these approaches are candidates for implementation at higher magnetic fields.
Collapse
Affiliation(s)
- T. V. Can
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - J. E. McKay
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - R. T. Weber
- Bruker BioSpin Corporation, Billerica, Massachusetts 01821, United States
| | - C. Yang
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - T. Dubroca
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - J. van Tol
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - S. Hill
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
- Department of Physics, Florida State University, Tallahassee, Florida 32310, United States
| | - R. G. Griffin
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Abstract
Various recent developments in solid-state nuclear magnetic resonance (ssNMR) spectroscopy have enabled an array of new insights regarding the structure, dynamics, and interactions of biomolecules. In the ever more integrated world of structural biology, ssNMR studies provide structural and dynamic information that is complementary to the data accessible by other means. ssNMR enables the study of samples lacking a crystalline lattice, featuring static as well as dynamic disorder, and does so independent of higher-order symmetry. The present study surveys recent applications of biomolecular ssNMR and examines how this technique is increasingly integrated with other structural biology techniques, such as (cryo) electron microscopy, solution-state NMR, and X-ray crystallography. Traditional ssNMR targets include lipid bilayer membranes and membrane proteins in a lipid bilayer environment. Another classic application has been in the area of protein misfolding and aggregation disorders, where ssNMR has provided essential structural data on oligomers and amyloid fibril aggregates. More recently, the application of ssNMR has expanded to a growing array of biological assemblies, ranging from non-amyloid protein aggregates, protein–protein complexes, viral capsids, and many others. Across these areas, multidimensional magic angle spinning (MAS) ssNMR has, in the last decade, revealed three-dimensional structures, including many that had been inaccessible by other structural biology techniques. Equally important insights in structural and molecular biology derive from the ability of MAS ssNMR to probe information beyond comprehensive protein structures, such as dynamics, solvent exposure, protein–protein interfaces, and substrate–enzyme interactions.
Collapse
|
17
|
Liao WC, Ghaffari B, Gordon CP, Xu J, Copéret C. Dynamic Nuclear Polarization Surface Enhanced NMR spectroscopy (DNP SENS): Principles, protocols, and practice. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.02.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|