1
|
Xu X, Poggetto GD, McCoy M, Reibarkh M, Trigo-Mourino P. Rapid Characterization of Structural and Behavioral Changes of Therapeutic Proteins by Relaxation and Diffusion 1H-SOFAST NMR Experiments. Anal Chem 2024; 96:16322-16329. [PMID: 39356572 DOI: 10.1021/acs.analchem.4c03479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Biologic drugs have emerged as a rapidly expanding and important modality, offering promising therapeutic solutions by interacting with previously "undruggable" targets, thus significantly expanding the range of modern pharmaceutical applications. However, the inherent complexity of these drugs also introduces liabilities and poses challenges in their development, necessitating efficient screening methods to evaluate the structural stability and behavior. Although nuclear magnetic resonance (NMR) spectroscopy is well-suited for detecting weak interactions, changes in dynamics, high-order structure, and association states of macromolecules in fully formulated samples, the inherent low sensitivity limits its utility as a fast screening and characterization tool. In this study, we present two fast pulsing NMR experiments, namely the band-Selective Optimized Flip-Angle Internally encoded Relaxation (SOFAIR) and the band-Selective Optimized Flip-angle Internally encoded Translational diffusion (SOFIT)), which enable rapid and reliable measurements of transverse relaxation rates and diffusion coefficients with more than 10-fold higher sensitivity compared to commonly used methods, like Carr-Purcell-Meiboom-Gill and diffusion-ordered spectroscopy, allowing the rapid assessment of biologics even at low concentrations. We demonstrated the effectiveness and versatility of these experiments by evaluating several examples, including thermally stressed proteins, proteins at different concentrations, and a therapeutic protein in various formulations. We anticipate that these novel approaches will greatly facilitate the analysis and characterization of biologics during drug discovery.
Collapse
Affiliation(s)
- Xingjian Xu
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Guilherme Dal Poggetto
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Mark McCoy
- Quantitative Biosciences, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Mikhail Reibarkh
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Pablo Trigo-Mourino
- Analytical Research & Development, MRL, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Lenard AJ, Mulder FAA, Madl T. Solvent paramagnetic relaxation enhancement as a versatile method for studying structure and dynamics of biomolecular systems. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:113-139. [PMID: 36496256 DOI: 10.1016/j.pnmrs.2022.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/17/2023]
Abstract
Solvent paramagnetic relaxation enhancement (sPRE) is a versatile nuclear magnetic resonance (NMR)-based method that allows characterization of the structure and dynamics of biomolecular systems through providing quantitative experimental information on solvent accessibility of NMR-active nuclei. Addition of soluble paramagnetic probes to the solution of a biomolecule leads to paramagnetic relaxation enhancement in a concentration-dependent manner. Here we review recent progress in the sPRE-based characterization of structural and dynamic properties of biomolecules and their complexes, and aim to deliver a comprehensive illustration of a growing number of applications of the method to various biological systems. We discuss the physical principles of sPRE measurements and provide an overview of available co-solute paramagnetic probes. We then explore how sPRE, in combination with complementary biophysical techniques, can further advance biomolecular structure determination, identification of interaction surfaces within protein complexes, and probing of conformational changes and low-population transient states, as well as deliver insights into weak, nonspecific, and transient interactions between proteins and co-solutes. In addition, we present examples of how the incorporation of solvent paramagnetic probes can improve the sensitivity of NMR experiments and discuss the prospects of applying sPRE to NMR metabolomics, drug discovery, and the study of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Aneta J Lenard
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Research Unit Integrative Structural Biology, Medical University of Graz, 8010 Graz, Austria.
| | - Frans A A Mulder
- Interdisciplinary Nanoscience Center and Department of Chemistry, University of Aarhus, DK-8000 Aarhus, Denmark; Institute of Biochemistry, Johannes Kepler Universität Linz, 4040 Linz, Austria.
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Research Unit Integrative Structural Biology, Medical University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
3
|
Adpressa DA, Reibarkh M, Jiang Y, Saurí J, Makarov AA. Interrogation of solution conformation of complex macrocyclic peptides utilizing a combined SEC-HDX-MS, circular dichroism, and NMR workflow. Analyst 2021; 147:325-332. [PMID: 34927633 DOI: 10.1039/d1an01619a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent technological and synthetic advances have led to a resurgence in the exploration of peptides as potential therapeutics. Understanding peptide conformation in both free and protein-bound states remains one of the most critical areas for successful development of peptide drugs. In this study it was demonstrated that the combination of Size-Exclusion Chromatography with Hydrogen-Deuterium Exchange Mass Spectrometry (SEC-HDX-MS) and Circular Dichroism Spectroscopy (CD) can be used to guide the selection of peptides for further NMR analysis. Moreover, the insights from this workflow guide the choice of the best biologically relevant conditions for NMR conformational studies of peptide ligands in a free state in solution. Combined information about solution conformation character and stability across temperatures and co-solvent compositions greatly expedites selection of optimal conditions for NMR analysis. In total, the combination of SEC-HDX-MS, CD, and NMR into a single complementary workflow greatly accelerates conformational analysis of peptides in the drug discovery lead optimization process.
Collapse
Affiliation(s)
- Donovon A Adpressa
- Analytical Research & Development, Merck & Co. Inc., Boston, Massachusetts 02115, USA.
| | - Mikhail Reibarkh
- Analytical Research & Development, Merck & Co. Inc., Rahway, New Jersey 07065, USA.
| | - Yuan Jiang
- Analytical Research & Development, Merck & Co. Inc., Boston, Massachusetts 02115, USA.
| | - Josep Saurí
- Analytical Research & Development, Merck & Co. Inc., Boston, Massachusetts 02115, USA.
| | - Alexey A Makarov
- Analytical Research & Development, Merck & Co. Inc., Boston, Massachusetts 02115, USA.
| |
Collapse
|
4
|
Sugiki T, Lee YH, Alsanousi N, Murata K, Kawamura I, Fujiwara T, Hanada K, Kojima C. A hybrid strategy combining solution NMR spectroscopy and isothermal titration calorimetry to characterize protein-nanodisc interaction. Anal Biochem 2021; 639:114521. [PMID: 34906540 DOI: 10.1016/j.ab.2021.114521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 11/19/2022]
Abstract
NMR is a powerful tool for characterizing intermolecular interactions at atomic resolution. However, the nature of the complex interactions of membrane-binding proteins makes it difficult to elucidate the interaction mechanisms. Here, we demonstrated that structural and thermodynamic analyses using solution NMR spectroscopy and isothermal titration calorimetry (ITC) can clearly detect a specific interaction between the pleckstrin homology (PH) domain of ceramide transport protein (CERT) and phosphatidylinositol 4-monophosphate (PI4P) embedded in the lipid nanodisc, and distinguish the specific interaction from nonspecific interactions with the bulk surface of the lipid nanodisc. This NMR-ITC hybrid strategy provides detailed characterization of protein-lipid membrane interactions.
Collapse
Affiliation(s)
- Toshihiko Sugiki
- Institute for Protein Research, Osaka University, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Young-Ho Lee
- Institute for Protein Research, Osaka University, Yamadaoka, Suita, Osaka, 565-0871, Japan; Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Chungcheongbuk-do, 28119, South Korea; Bio-Analytical Science, University of Science and Technology, Daejeon, 34113, South Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, South Korea
| | - Nesreen Alsanousi
- Institute for Protein Research, Osaka University, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kaito Murata
- Graduate School of Engineering Science, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
| | - Izuru Kawamura
- Graduate School of Engineering Science, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
| | - Toshimichi Fujiwara
- Institute for Protein Research, Osaka University, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Chojiro Kojima
- Institute for Protein Research, Osaka University, Yamadaoka, Suita, Osaka, 565-0871, Japan; Graduate School of Engineering Science, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan.
| |
Collapse
|
5
|
Norton RS, Jahnke W. NMR in pharmaceutical discovery and development. JOURNAL OF BIOMOLECULAR NMR 2020; 74:473-476. [PMID: 32886261 DOI: 10.1007/s10858-020-00345-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
- ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC, 3052, Australia.
| | - Wolfgang Jahnke
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Virchow-16.3.249, 4002, Basel, Switzerland.
| |
Collapse
|
6
|
Beikzadeh M, Latham MP. The dynamic nature of the Mre11-Rad50 DNA break repair complex. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 163:14-22. [PMID: 33121960 DOI: 10.1016/j.pbiomolbio.2020.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/02/2020] [Accepted: 10/23/2020] [Indexed: 01/18/2023]
Abstract
The Mre11-Rad50-Nbs1/Xrs2 protein complex plays a pivotal role in the detection and repair of DNA double strand breaks. Through traditional and emerging structural biology techniques, various functional structural states of this complex have been visualized; however, relatively little is known about the transitions between these states. Indeed, it is these structural transitions that are important for Mre11-Rad50-mediated DNA unwinding at a break and the activation of downstream repair signaling events. Here, we present a brief overview of the current understanding of the structure of the core Mre11-Rad50 complex. We then highlight our recent studies emphasizing the contributions of solution state NMR spectroscopy and other biophysical techniques in providing insight into the structures and dynamics associated with Mre11-Rad50 functions.
Collapse
Affiliation(s)
- Mahtab Beikzadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Michael P Latham
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|