1
|
Abstract
Significance: In addition to their classical role in cellular ATP production, mitochondria are of key relevance in various (patho)physiological mechanisms including second messenger signaling, neuro-transduction, immune responses and death induction. Recent Advances: Within cells, mitochondria are motile and display temporal changes in internal and external structure ("mitochondrial dynamics"). During the last decade, substantial empirical and in silico evidence was presented demonstrating that mitochondrial dynamics impacts on mitochondrial function and vice versa. Critical Issues: However, a comprehensive and quantitative understanding of the bidirectional links between mitochondrial external shape, internal structure and function ("morphofunction") is still lacking. The latter particularly hampers our understanding of the functional properties and behavior of individual mitochondrial within single living cells. Future Directions: In this review we discuss the concept of mitochondrial morphofunction in mammalian cells, primarily using experimental evidence obtained within the last decade. The topic is introduced by briefly presenting the central role of mitochondria in cell physiology and the importance of the mitochondrial electron transport chain (ETC) therein. Next, we summarize in detail how mitochondrial (ultra)structure is controlled and discuss empirical evidence regarding the equivalence of mitochondrial (ultra)structure and function. Finally, we provide a brief summary of how mitochondrial morphofunction can be quantified at the level of single cells and mitochondria, how mitochondrial ultrastructure/volume impacts on mitochondrial bioreactions and intramitochondrial protein diffusion, and how mitochondrial morphofunction can be targeted by small molecules.
Collapse
Affiliation(s)
- Elianne P. Bulthuis
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Merel J.W. Adjobo-Hermans
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter H.G.M. Willems
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Werner J.H. Koopman
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- Address correspondence to: Dr. Werner J.H. Koopman, Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, P.O. Box 9101, Nijmegen NL-6500 HB, The Netherlands
| |
Collapse
|
2
|
Marques-Aleixo I, Santos-Alves E, Torrella JR, Oliveira PJ, Magalhães J, Ascensão A. Exercise and Doxorubicin Treatment Modulate Cardiac Mitochondrial Quality Control Signaling. Cardiovasc Toxicol 2019; 18:43-55. [PMID: 28536949 DOI: 10.1007/s12012-017-9412-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cross-tolerance effect of exercise against heart mitochondrial-mediated quality control, remodeling and death-related mechanisms associated with sub-chronic Doxorubicin (DOX) treatment is yet unknown. We therefore analyzed the effects of two distinct chronic exercise models (endurance treadmill training-TM and voluntary free wheel activity-FW) performed during the course of the sub-chronic DOX treatment on mitochondrial susceptibility to permeability transition pore (mPTP), apoptotic and autophagic signaling and mitochondrial dynamics. Male Sprague-Dawley rats were divided into six groups (n = 6 per group): saline sedentary (SAL + SED), SAL + TM (12-weeks treadmill), SAL + FW (12-weeks voluntary free-wheel), DOX + SED [7-weeks sub-chronic DOX treatment (2 mg kg-1 week-1)], DOX + TM and DOX + FW. Apoptotic signaling and mPTP regulation were followed by measuring caspase 3, 8 and 9 activities, Bax, Bcl2, CypD, ANT, and cophilin expression. Mitochondrial dynamics (Mfn1, Mfn2, OPA1 and DRP1) and auto(mito)phagy (LC3, Beclin1, Pink1, Parkin and p62)-related proteins were semi-quantified. DOX treatment results in augmented mPTP susceptibility and apoptotic signaling (caspases 3, 8 and 9 and Bax/Bcl2 ratio). Moreover, DOX decreased the expression of fusion-related proteins (Mfn1, Mfn2, OPA1), increased DRP1 and the activation of auto(mito)phagy signaling. TM and FW prevented DOX-increased mPTP susceptibility and apoptotic signaling, alterations in mitochondrial dynamics and inhibits DOX-induced increases in auto(mito)phagy signaling. Collectively, our results suggest that both used chronic exercise models performed before and during the course of sub-chronic DOX treatment limit cardiac mitochondrial-driven apoptotic signaling and regulate alterations in mitochondrial dynamics and auto(mito)phagy in DOX-treated animals.
Collapse
Affiliation(s)
- I Marques-Aleixo
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Rua Dr. Plácido Costa 91, 4200-450, Porto, Portugal.
| | - E Santos-Alves
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Rua Dr. Plácido Costa 91, 4200-450, Porto, Portugal.,Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - J R Torrella
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - P J Oliveira
- CNC - Centre for Neuroscience and Cell Biology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - J Magalhães
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Rua Dr. Plácido Costa 91, 4200-450, Porto, Portugal
| | - A Ascensão
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Rua Dr. Plácido Costa 91, 4200-450, Porto, Portugal
| |
Collapse
|
3
|
Baev AY, Elustondo PA, Negoda A, Pavlov EV. Osmotic regulation of the mitochondrial permeability transition pore investigated by light scattering, fluorescence and electron microscopy techniques. Anal Biochem 2017; 552:38-44. [PMID: 28693989 DOI: 10.1016/j.ab.2017.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 01/08/2023]
Abstract
Mitochondrial permeability transition (PT) is a phenomenon of an increase of the inner membrane permeability in response to an excessive matrix calcium accumulation. PTP is caused by the opening of the large weakly selective channel. Molecular composition and regulation of permeability transition pore (PTP) are not well understood. Here we used isolated mitochondria to investigate dependence of PTP activation on the osmotic pressure. We found that in low osmotic strength solution calcium-induced PTP is significantly inhibited. We propose that this effect is linked to the changes in the curvature of the mitochondrial inner membrane. This interpretation is consistent with the idea about the importance of ATP synthase dimerization in modulation of the PTP activity.
Collapse
Affiliation(s)
- Artyom Y Baev
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada; Educational-Experimental Centre of High Technologies, Tashkent, Uzbekistan.
| | - Pia A Elustondo
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Alexander Negoda
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Evgeny V Pavlov
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Basic Sciences, New York University, College of Dentistry, 345 East 24th Street, New York, NY 10010, USA.
| |
Collapse
|
4
|
Yekkour A, Tran D, Arbelet-Bonnin D, Briand J, Mathieu F, Lebrihi A, Errakhi R, Sabaou N, Bouteau F. Early events induced by the toxin deoxynivalenol lead to programmed cell death in Nicotiana tabacum cells. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:148-57. [PMID: 26259183 DOI: 10.1016/j.plantsci.2015.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 06/04/2023]
Abstract
Deoxynivalenol (DON) is a mycotoxin affecting animals and plants. This toxin synthesized by Fusarium culmorum and Fusarium graminearum is currently believed to play a decisive role in the fungal phytopathogenesis as a virulence factor. Using cultured cells of Nicotiana tabacum BY2, we showed that DON-induced programmed cell death (PCD) could require transcription and translation processes, in contrast to what was observed in animal cells. DON could induce different cross-linked pathways involving (i) reactive oxygen species (ROS) generation linked, at least partly, to a mitochondrial dysfunction and a transcriptional down-regulation of the alternative oxidase (Aox1) gene and (ii) regulation of ion channel activities participating in cell shrinkage, to achieve PCD.
Collapse
Affiliation(s)
- Amine Yekkour
- Université Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain, Paris, France; Ecole Normale Supérieure de Kouba, Laboratoire de Biologie de Systèmes Microbiens, Alger, Algeria; Institut National de la Recherche Agronomique d'Algérie, Centre de Recherche polyvalent Mehdi Boualem, Alger, Algeria
| | - Daniel Tran
- Université Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain, Paris, France
| | - Delphine Arbelet-Bonnin
- Université Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain, Paris, France
| | - Joël Briand
- Université Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain, Paris, France
| | - Florence Mathieu
- Université de Toulouse, Laboratoire de Génie Chimique UMR 5503 (CNRS/INPT/UPS), ENSAT/INP de Toulouse, Castanet-Tolosan Cedex, France
| | - Ahmed Lebrihi
- Université de Toulouse, Laboratoire de Génie Chimique UMR 5503 (CNRS/INPT/UPS), ENSAT/INP de Toulouse, Castanet-Tolosan Cedex, France; Université Moulay Ismail, Marjane 2, BP 298, Meknès, Maroc
| | - Rafik Errakhi
- Université Moulay Ismail, Marjane 2, BP 298, Meknès, Maroc
| | - Nasserdine Sabaou
- Ecole Normale Supérieure de Kouba, Laboratoire de Biologie de Systèmes Microbiens, Alger, Algeria
| | - François Bouteau
- Université Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain, Paris, France.
| |
Collapse
|
5
|
Blanchet L, Grefte S, Smeitink JAM, Willems PHGM, Koopman WJH. Photo-induction and automated quantification of reversible mitochondrial permeability transition pore opening in primary mouse myotubes. PLoS One 2014; 9:e114090. [PMID: 25423172 PMCID: PMC4244163 DOI: 10.1371/journal.pone.0114090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 11/04/2014] [Indexed: 11/19/2022] Open
Abstract
Opening of the mitochondrial permeability transition pore (mPTP) is involved in various cellular processes including apoptosis induction. Two distinct states of mPTP opening have been identified allowing the transfer of molecules with a molecular weight <1500 Da or <300 Da. The latter state is considered to be reversible and suggested to play a role in normal cell physiology. Here we present a strategy combining live-cell imaging and computer-assisted image processing allowing spatial visualization and quantitative analysis of reversible mPTP openings ("ΔΨ flickering") in primary mouse myotubes. The latter were stained with the photosensitive cation TMRM, which partitions between the cytosol and mitochondrial matrix as a function of mitochondrial membrane potential (ΔΨ). Controlled illumination of TMRM-stained primary mouse myotubes induced ΔΨ flickering in particular parts of the cell ("flickering domains"). A novel quantitative automated analysis was developed and validated to detect and quantify the frequency, size, and location of individual ΔΨ flickering events in myotubes.
Collapse
Affiliation(s)
- Lionel Blanchet
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute for Molecules and Materials, Analytical Chemistry/Chemometrics, Radboud University Nijmegen, Nijmegen, The Netherlands
- Centre for Systems Biology and Bioenergetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sander Grefte
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Centre for Systems Biology and Bioenergetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan A. M. Smeitink
- Department of Paediatrics, Nijmegen Centre for Mitochondrial disorders, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter H. G. M. Willems
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Centre for Systems Biology and Bioenergetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Werner J. H. Koopman
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Centre for Systems Biology and Bioenergetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Piquereau J, Caffin F, Novotova M, Lemaire C, Veksler V, Garnier A, Ventura-Clapier R, Joubert F. Mitochondrial dynamics in the adult cardiomyocytes: which roles for a highly specialized cell? Front Physiol 2013; 4:102. [PMID: 23675354 PMCID: PMC3650619 DOI: 10.3389/fphys.2013.00102] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/23/2013] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial dynamics is a recent topic of research in the field of cardiac physiology. The study of mechanisms involved in the morphological changes and in the mobility of mitochondria is legitimate since the adult cardiomyocytes possess numerous mitochondria which occupy at least 30% of cell volume. However, architectural constraints exist in the cardiomyocyte that limit mitochondrial movements and communication between adjacent mitochondria. Still, the proteins involved in mitochondrial fusion and fission are highly expressed in these cells and could be involved in different processes important for the cardiac function. For example, they are required for mitochondrial biogenesis to synthesize new mitochondria and for the quality-control of the organelles. They are also involved in inner membrane organization and may play a role in apoptosis. More generally, change in mitochondrial morphology can have consequences in the functioning of the respiratory chain, in the regulation of the mitochondrial permeability transition pore (MPTP), and in the interactions with other organelles. Furthermore, the proteins involved in fusion and fission of mitochondria are altered in cardiac pathologies such as ischemia/reperfusion or heart failure (HF), and appear to be valuable targets for pharmacological therapies. Thus, mitochondrial dynamics deserves particular attention in cardiac research. The present review draws up a report of our knowledge on these phenomena.
Collapse
Affiliation(s)
- Jerome Piquereau
- Department of Signaling and Cardiac Pathophysiology, U-769, INSERM Châtenay-Malabry, France ; IFR141, Université Paris-Sud Châtenay-Malabry, France
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Diaz RJ, Fernandes K, Lytvyn Y, Hawrylyshyn K, Harvey K, Hossain T, Hinek A, Wilson GJ. Enhanced cell-volume regulation in cyclosporin A cardioprotection. Cardiovasc Res 2013; 98:411-9. [PMID: 23483048 DOI: 10.1093/cvr/cvt056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIMS Cyclosporin A (CsA) has been shown to protect against ischaemia/reperfusion injury presumably by its inhibition of mitochondrial permeability transition pore opening through cyclophilin D inhibition. We examine if CsA cardioprotection involves a cell-volume regulatory mechanism. METHODS AND RESULTS To address this issue, cultured rabbit cardiomyocytes were subjected to the following protocols: (i) cardiomyocytes were treated with 200 nM CsA either given for 10 min followed by 10 min of washout prior to 30 min hypo-osmotic stress (200 mOsm) or administered throughout 75 min simulated ischaemia/60 min simulated reperfusion. Cell necrosis and cell swelling were determined by trypan blue staining and cell-volume measurements, respectively; (ii) SPQ(6-methoxy-N-(3-sulfopropyl)quinolinium) dye loaded cardiomyocytes were treated with 200 nM CsA for 10 min followed by 10 min washout and intracellular Cl(-) concentration measured (Cl(-) efflux); (iii) 5,5',6,6'-tetrachloro-1,1',3,3'- tetraethylbenzimi-dazolylcarbocyanine iodide(JC-1) loaded cardiomyocytes were treated with 200 nM CsA to inhibit mitochondrial membrane potential (ΔΨm) dissipation (an index of mitochondria permeability transition pore opening) by either valinomycin (2 μM) or ischaemia/reperfusion injury. Cl(-) channels were blocked by indanyloxyacetic acid 94 (IAA-94, 50 μM). CsA not only significantly (P < 0.001) reduced the % of dead cells following simulated ischaemia/reperfusion but it also triggered an efflux of Cl(-), hence enhancing cardiomyocyte cell-volume regulatory response. CsA protection against cell necrosis and its effect on Cl(-) transport/volume regulation were all blocked by IAA-94. IAA-94 had no effect on ΔΨm. CONCLUSION These data indicate that CsA protects against cell necrosis at least in part by enhancing cardiomyocyte volume regulation, and not simply by inhibiting MPTP opening.
Collapse
Affiliation(s)
- Roberto J Diaz
- Division of Cell Biology, Research Institute, McMaster Bldg, Room 7019C, 555 University Ave, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Piquereau J, Caffin F, Novotova M, Prola A, Garnier A, Mateo P, Fortin D, Huynh LH, Nicolas V, Alavi MV, Brenner C, Ventura-Clapier R, Veksler V, Joubert F. Down-regulation of OPA1 alters mouse mitochondrial morphology, PTP function, and cardiac adaptation to pressure overload. Cardiovasc Res 2012; 94:408-17. [PMID: 22406748 DOI: 10.1093/cvr/cvs117] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
AIMS The optic atrophy 1 (OPA1) protein is an essential protein involved in the fusion of the mitochondrial inner membrane. Despite its high level of expression, the role of OPA1 in the heart is largely unknown. We investigated the role of this protein in Opa1(+/-) mice, having a 50% reduction in OPA1 protein expression in cardiac tissue. METHODS AND RESULTS In mutant mice, cardiac function assessed by echocardiography was not significantly different from that of the Opa1(+/+). Electron and fluorescence microscopy revealed altered morphology of the Opa1(+/-) mice mitochondrial network; unexpectedly, mitochondria were larger with the presence of clusters of fused mitochondria and altered cristae. In permeabilized mutant ventricular fibres, mitochondrial functional properties were maintained, but direct energy channelling between mitochondria and myofilaments was weakened. Importantly, the mitochondrial permeability transition pore (PTP) opening in isolated permeabilized cardiomyocytes and in isolated mitochondria was significantly less sensitive to mitochondrial calcium accumulation. Finally, 6 weeks after transversal aortic constriction, Opa1(+/-) hearts demonstrated hypertrophy almost two-fold higher (P< 0.01) than in wild-type mice with altered ejection fraction (decrease in 43 vs. 22% in Opa1(+/+) mice, P< 0.05). CONCLUSIONS These results suggest that, in adult cardiomyocytes, OPA1 plays an important role in mitochondrial morphology and PTP functioning. These properties may be critical for cardiac function under conditions of chronic pressure overload.
Collapse
Affiliation(s)
- Jerome Piquereau
- INSERM, U-769, Faculté de Pharmacie, Université Paris-Sud, 5 rue J-B Clément, F-92296 Châtenay-Malabry, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Izem-Meziane M, Djerdjouri B, Rimbaud S, Caffin F, Fortin D, Garnier A, Veksler V, Joubert F, Ventura-Clapier R. Catecholamine-induced cardiac mitochondrial dysfunction and mPTP opening: protective effect of curcumin. Am J Physiol Heart Circ Physiol 2011; 302:H665-74. [PMID: 22101527 DOI: 10.1152/ajpheart.00467.2011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was designed to characterize the mitochondrial dysfunction induced by catecholamines and to investigate whether curcumin, a natural antioxidant, induces cardioprotective effects against catecholamine-induced cardiotoxicity by preserving mitochondrial function. Because mitochondria play a central role in ischemia and oxidative stress, we hypothesized that mitochondrial dysfunction is involved in catecholamine toxicity and in the potential protective effects of curcumin. Male Wistar rats received subcutaneous injection of 150 mg·kg(-1)·day(-1) isoprenaline (ISO) for two consecutive days with or without pretreatment with 60 mg·kg(-1)·day(-1) curcumin. Twenty four hours after, cardiac tissues were examined for apoptosis and oxidative stress. Expression of proteins involved in mitochondrial biogenesis and function were measured by real-time RT-PCR. Isolated mitochondria and permeabilized cardiac fibers were used for swelling and mitochondrial function experiments, respectively. Mitochondrial morphology and permeability transition pore (mPTP) opening were assessed by fluorescence in isolated cardiomyocytes. ISO treatment induced cell damage, oxidative stress, and apoptosis that were prevented by curcumin. Moreover, mitochondria seem to play an important role in these effects as respiration and mitochondrial swelling were increased following ISO treatment, these effects being again prevented by curcumin. Importantly, curcumin completely prevented the ISO-induced increase in mPTP calcium susceptibility in isolated cardiomyocytes without affecting mitochondrial biogenesis and mitochondrial network dynamic. The results unravel the importance of mitochondrial dysfunction in isoprenaline-induced cardiotoxicity as well as a new cardioprotective effect of curcumin through prevention of mitochondrial damage and mPTP opening.
Collapse
Affiliation(s)
- Malika Izem-Meziane
- Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene Bab Ezzouar, El Alia, Alger, Algérie
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Devun F, Walter L, Belliere J, Cottet-Rousselle C, Leverve X, Fontaine E. Ubiquinone analogs: a mitochondrial permeability transition pore-dependent pathway to selective cell death. PLoS One 2010; 5:e11792. [PMID: 20668684 PMCID: PMC2909912 DOI: 10.1371/journal.pone.0011792] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 07/02/2010] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Prolonged opening of the mitochondrial permeability transition pore (PTP) leads to cell death. Various ubiquinone analogs have been shown to regulate PTP opening but the outcome of PTP regulation by ubiquinone analogs on cell fate has not been studied yet. METHODOLOGY/PRINCIPAL FINDINGS The effects of ubiquinone 0 (Ub(0)), ubiquinone 5 (Ub(5)), ubiquinone 10 (Ub(10)) and decyl-ubiquinone (DUb) were studied in freshly isolated rat hepatocytes, cultured rat liver Clone-9 cells and cancerous rat liver MH1C1 cells. PTP regulation by ubiquinones differed significantly in permeabilized Clone-9 and MH1C1 cells from that previously reported in liver mitochondria. Ub(0) inhibited PTP opening in isolated hepatocytes and Clone-9 cells, whereas it induced PTP opening in MH1C1 cells. Ub(5) did not affect PTP opening in isolated hepatocytes and MH1C1 cells, but it induced PTP opening in Clone-9 cells. Ub(10) regulated PTP in isolated hepatocytes, whereas it did not affect PTP opening in Clone-9 and MH1C1 cells. Only DUb displayed the same effect on PTP regulation in the three hepatocyte lines tested. Despite such modifications in PTP regulation, competition between ubiquinones still occurred in Clone-9 and MH1C1 cells. As expected, Ub(5) induced a PTP-dependent cell death in Clone-9, while it did not affect MH1C1 cell viability. Ub(0) induced a PTP-dependent cell death in MH1C1 cells, but was also slightly cytotoxic in Clone-9 by an oxidative stress-dependent mechanism. CONCLUSIONS/SIGNIFICANCE We found that various ubiquinone analogs regulate PTP in different ways depending on the cell studied. We took advantage of this unique property to develop a PTP opening-targeted strategy that leads to cell death specifically in cells where the ubiquinone analog used induces PTP opening, while sparing the cells in which it does not induce PTP opening.
Collapse
Affiliation(s)
- Flavien Devun
- INSERM, U884, F-38041, Grenoble, France
- Université Joseph Fourier, Laboratoire de Bioénergétique Fondamentale et Appliquée, F-38041, Grenoble, France
| | - Ludivine Walter
- INSERM, U884, F-38041, Grenoble, France
- Université Joseph Fourier, Laboratoire de Bioénergétique Fondamentale et Appliquée, F-38041, Grenoble, France
| | - Julie Belliere
- INSERM, U884, F-38041, Grenoble, France
- Université Joseph Fourier, Laboratoire de Bioénergétique Fondamentale et Appliquée, F-38041, Grenoble, France
| | - Cécile Cottet-Rousselle
- INSERM, U884, F-38041, Grenoble, France
- Université Joseph Fourier, Laboratoire de Bioénergétique Fondamentale et Appliquée, F-38041, Grenoble, France
| | - Xavier Leverve
- INSERM, U884, F-38041, Grenoble, France
- Université Joseph Fourier, Laboratoire de Bioénergétique Fondamentale et Appliquée, F-38041, Grenoble, France
| | - Eric Fontaine
- INSERM, U884, F-38041, Grenoble, France
- Université Joseph Fourier, Laboratoire de Bioénergétique Fondamentale et Appliquée, F-38041, Grenoble, France
- * E-mail:
| |
Collapse
|
11
|
Hansson MJ, Morota S, Teilum M, Mattiasson G, Uchino H, Elmér E. Increased potassium conductance of brain mitochondria induces resistance to permeability transition by enhancing matrix volume. J Biol Chem 2009; 285:741-50. [PMID: 19880514 DOI: 10.1074/jbc.m109.017731] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Modulation of K(+) conductance of the inner mitochondrial membrane has been proposed to mediate preconditioning in ischemia-reperfusion injury. The mechanism is not entirely understood, but it has been linked to a decreased activation of mitochondrial permeability transition (mPT). In the present study K(+) channel activity was mimicked by picomolar concentrations of valinomycin. Isolated brain mitochondria were exposed to continuous infusions of calcium. Monitoring of extramitochondrial Ca(2+) and mitochondrial respiration provided a quantitative assay for mPT sensitivity by determining calcium retention capacity (CRC). Valinomycin and cyclophilin D inhibition separately and additively increased CRC. Comparable degrees of respiratory uncoupling induced by increased K(+) or H(+) conductance had opposite effects on mPT sensitivity. Protonophores dose-dependently decreased CRC, demonstrating that so-called mild uncoupling was not beneficial per se. The putative mitoK(ATP) channel opener diazoxide did not mimic the effect of valinomycin. An alkaline matrix pH was required for mitochondria to retain calcium, but increased K(+) conductance did not result in augmented DeltapH. The beneficial effect of valinomycin on CRC was not mediated by H(2)O(2)-induced protein kinase Cepsilon activation. Rather, increased K(+) conductance reduced H(2)O(2) generation during calcium infusion. Lowering the osmolarity of the buffer induced an increase in mitochondrial volume and improved CRC similar to valinomycin without inducing uncoupling or otherwise affecting respiration. We propose that increased potassium conductance in brain mitochondria may cause a direct physiological effect on matrix volume inducing resistance to pathological calcium challenges.
Collapse
Affiliation(s)
- Magnus J Hansson
- Mitochondrial Pathophysiology Unit, Laboratory for Experimental Brain Research, Department of Clinical Sciences, Lund University, SE-221 84 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
12
|
Iijima T, Tanaka K, Matsubara S, Kawakami H, Mishima T, Suga K, Akagawa K, Iwao Y. Calcium loading capacity and morphological changes in mitochondria in an ischemic preconditioned model. Neurosci Lett 2008; 448:268-72. [PMID: 18955111 DOI: 10.1016/j.neulet.2008.10.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 10/16/2008] [Accepted: 10/17/2008] [Indexed: 01/25/2023]
Abstract
The concept of the mitochondrial permeability transition (mPT) has been used to explain cell death induced by calcium deregulation, which is in turn induced by a disruption in the mitochondrial loading capacity of cytosolic calcium (CLC). Whether mitochondria have specific morphologies representing the CLC and the mPT remains controversial. We examined ultrastructural changes in the mitochondria of cultured hippocampal neurons preconditioned with oxygen-glucose deprivation (OGD) for 30 min (30OGD) or 120 min (120OGD). The CLC was then evaluated using simultaneous imaging of the mitochondrial and plasma Ca++ concentrations after the induction of Ca++ influx by the application of glutamate. In the 30OGD group, the CLC increased as the mitochondria rapidly reacted to the increase in plasma Ca++, which was soon cleared. In the 120OGD group, however, the CLC was disturbed because the mitochondrial uptake of Ca was blunted, and the plasma Ca++ was not cleared after glutamate application. We classified the specific morphological changes in the mitochondria according to a previously reported classification. Rounded mitochondria with scarce interior content were observed in the 120OGD group, a model of prolonged lethal OGD, and disruptions in the mitochondrial outer membrane were frequently confirmed, suggesting mPT. The 30OGD group, a model of enhanced CLC in preconditioned neurons, was characterized by round mitochondria with condensed matrices. After glutamate application, the mitochondria became even more rounded with expanded matrices, and outer membrane disruptions were occasionally seen. Our observations suggest that subpopulations of mitochondria with specific morphologies are linked to the CLC and mPT.
Collapse
Affiliation(s)
- Takehiko Iijima
- Department of Anesthesiology, Kyorin University, School of Medicine, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
García N, Martínez-Abundis E, Pavón N, Chávez E. Sodium inhibits permeability transition by decreasing potassium matrix content in rat kidney mitochondria. Comp Biochem Physiol B Biochem Mol Biol 2006; 144:442-50. [PMID: 16762575 DOI: 10.1016/j.cbpb.2006.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2005] [Revised: 04/18/2006] [Accepted: 04/18/2006] [Indexed: 01/19/2023]
Abstract
Inner membrane mitochondria undergo a permeability increase elicited after the opening of a nonspecific pore due to supraphysiological matrix Ca2+ load, and the presence of an inducer. Multiple inducers have been used to promote the transition in permeability; among them are carboxyatractyloside (CAT) and reactive oxygen-derived species. In contrast, inhibitors such as ADP and cyclosporin A have been commonly used. In this work, we show that the opening or closure of the nonspecific pore depends on the cationic composition of the incubation medium. It was found that when mitochondria were incubated in either 125 mM KCl or 125 mM LiCl, ADP was essential to maintain selective membrane permeability. Interestingly, the nucleotide was not required when the medium contained 125 mM NaCl. Furthermore, it was established that CAT promotes membrane leakage in K(+)- or Li(+)-incubated mitochondria, while it failed to do so in Na(+)-incubated mitochondria. Evidence is also presented on the ability of Na+ to induce resistance in mitochondria against membrane damage by oxidative stress. Mitochondrial Ca2+ discharge, swelling, and transmembrane electric gradient were analyzed to establish permeability transition. It is concluded that the protection provided by Na+ was accomplished by inducing matrix K+ depletion, which, in turn, diminished the free fraction of matrix Ca2+.
Collapse
Affiliation(s)
- Noemí García
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, DF, México, Mexico
| | | | | | | |
Collapse
|
14
|
De Oliveira F, Chauvin C, Ronot X, Mousseau M, Leverve X, Fontaine E. Effects of permeability transition inhibition and decrease in cytochrome c content on doxorubicin toxicity in K562 cells. Oncogene 2005; 25:2646-55. [PMID: 16331251 DOI: 10.1038/sj.onc.1209293] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As mitochondria play a key role in the commitment to cell death, we have investigated the mitochondrial consequences of resistance to doxorubicin (DOX) in K562 cells. We found that the permeability transition pore (PTP) inhibitor cyclosporine A (CsA) failed to inhibit PTP opening in the resistant clone. Moreover, the Ca2+ loading capacity in the resistant clone was identical to that observed in the parent cells in the presence of CsA, suggesting that the PTP was already inhibited in a CsA-like manner in the resistant cells. In agreement with this proposal, the mitochondrial target of CsA cyclophilin D (CyD) decreased by half in the resistant cells. The levels of adenine nucleotide translocator, voltage anion-dependent channel, Bax, Bcl-2, Bcl-xL, AIF and Smac/Diablo, were similar in both cell lines, whereas cytochrome c content was divided by three in the resistant cells. Since P-glycoprotein inhibition did not restore DOX toxicity in the resistant cells, while DOX-induced cell death in the parent cells was prevented by either PTP inhibition or siRNA-induced decrease in cytochrome c content, we conclude that the inhibition of PTP opening and the decrease in cytochrome c content participate in the mechanism that makes K562 cells resistant to DOX.
Collapse
Affiliation(s)
- F De Oliveira
- INSERM E-0221 Bioénergétique Fondamentale et Appliquée, Université Joseph Fourier, Grenoble, France
| | | | | | | | | | | |
Collapse
|