1
|
Onukwufor JO, Kamunde C. Interactive effects of temperature, cadmium, and hypoxia on rainbow trout (Oncorhynchus mykiss) liver mitochondrial bioenergetics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117450. [PMID: 39632330 PMCID: PMC11783143 DOI: 10.1016/j.ecoenv.2024.117450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Fish in their natural environments possess elaborate mechanisms that regulate physiological function to mitigate the adverse effects of multiple environmental stressors such as temperature, metals, and hypoxia. We investigated how warm acclimation affects mitochondrial responses to Cd, hypoxia, and acute temperature shifts (heat shock and cold snap) in rainbow trout. We observed that state 3 respiration driven by complex I (CI) was resistant to the stressors while warm acclimation and Cd reduced complex I +II (CI + II) driven state 3 respiration. In contrast, state 4 (leak) respirations for both CI and CI + II were consistently stimulated by warm acclimation resulting in reduced mitochondrial coupling efficiency (respiratory control ratio [RCR]). Warm acclimation and Cd exacerbated their individual effect on leak respiration to further reduce the RCR. Moreover, the effect of warm acclimation on mitochondrial bioenergetics aligned with its inhibitory effect on activities of citrate synthase and both CI and CII. Unlike the Cd and warm acclimation combined exposure, hypoxia alone and in combination with warm acclimation and/or Cd abolished the stimulation of CI and CI + II powered leak respirations resulting in partial recovery of RCR. The response to acute temperature shifts indicated that while state 3 respiration returned to pre-acclimation level, the leak respiration did not. Overall, our findings suggest a complex in vivo interaction of multiple stressors on mitochondrial function that are not adequately predicted by their individual effects.
Collapse
Affiliation(s)
- John O Onukwufor
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
2
|
Wang Y, Wang Y, Li S, Jin H, Duan J, Lu X, Qin Y, Song J, Li X, Jin X. Insights of Chinese herbal medicine for mitochondrial dysfunction in chronic cerebral hypoperfusion induced cognitive impairment: Existed evidences and potential directions. Front Pharmacol 2023; 14:1138566. [PMID: 36843941 PMCID: PMC9950122 DOI: 10.3389/fphar.2023.1138566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Chronic cerebral hypoperfusion (CCH) is one of the main pathophysiological markers of cognitive impairment in central nervous system diseases. Mitochondria are cores of energy generation and information process. Mitochondrial dysfunction is the key upstream factors of CCH induced neurovascular pathology. Increasing studies explored the molecular mechanisms of mitochondrial dysfunction and self-repair for effective targets to improve CCH-related cognitive impairment. The clinical efficacy of Chinese herbal medicine in the treatment of CCH induced cognitive impairment is definite. Existed evidences from pharmacological studies have further proved that, Chinese herbal medicine could improve mitochondrial dysfunction and neurovascular pathology after CCH by preventing calcium overload, reducing oxidative stress damage, enhancing antioxidant capacity, inhibiting mitochondria-related apoptosis pathway, promoting mitochondrial biogenesis and preventing excessive activation of mitophagy. Besides, CCH mediated mitochondrial dysfunction is one of the fundamental causes for neurodegeneration pathology aggravation. Chinese herbal medicine also has great potential therapeutic value in combating neurodegenerative diseases by targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yefei Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Shixin Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Huihui Jin
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jiayu Duan
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiyue Lu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yinglin Qin
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jiale Song
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoshan Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xianglan Jin
- Department of Neurology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China,*Correspondence: Xianglan Jin,
| |
Collapse
|
3
|
Hashimoto M, Saito N, Ohta H, Yamamoto K, Tashiro A, Nakazawa K, Inanami O, Kitamura H. Inhibition of ubiquitin-specific protease 2 causes accumulation of reactive oxygen species, mitochondria dysfunction, and intracellular ATP decrement in C2C12 myoblasts. Physiol Rep 2019; 7:e14193. [PMID: 31353872 PMCID: PMC6661303 DOI: 10.14814/phy2.14193] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 12/29/2022] Open
Abstract
Ubiquitin-specific protease 2 (USP2) is considered to participate in the differentiation of myoblasts to myotubes, however, its functions in myoblasts under growth conditions remain elusive. In this study, we analyzed the physiological roles of USP2 in myoblasts using Usp2 knockout (KO) C2C12 cells as well as a USP2 specific inhibitor. In addition to the disruption of differentiation, clustered regularly interspaced short palindromic repeats/Cas9-generated Usp2KO cells exhibited inhibition of proliferation compared to parental C2C12 cells. Usp2KO cells reduced the accumulation of intracellular adenosine triphosphate (ATP) content and oxygen consumption. Moreover, Usp2KO cells had fragmented mitochondria, suggesting that mitochondrial respiration was inactive. The deficiency of Usp2 did not affect the enzymatic activities of respiratory chain complexes I, III, IV, and V. However, mitochondrial membrane permeability-evaluated using calcein AM-cobalt staining-was increased in Usp2KO cells. The membrane potential of Usp2KO cells was clearly decreased. Usp2KO cells accumulated reactive oxygen species (ROS) in the mitochondria. The USP2-selective inhibitor ML364 also increased the levels of mitochondrial ROS, and modulated the membrane potential and morphology of the mitochondria. These effects were followed by a decrement in the intracellular content of ATP. Based on these findings, we speculate that USP2 may be involved in maintaining the integrity of the mitochondrial membrane. This process ensures the supply of ATP in myoblasts, presumably leading to proliferation and differentiation.
Collapse
Affiliation(s)
- Mayuko Hashimoto
- Laboratory of Veterinary Physiology, School of Veterinary MedicineRakuno Gakuen UniversityEbetsuJapan
| | - Natsuko Saito
- Laboratory of Veterinary Physiology, School of Veterinary MedicineRakuno Gakuen UniversityEbetsuJapan
| | - Haru Ohta
- Laboratory of Veterinary Physiology, School of Veterinary MedicineRakuno Gakuen UniversityEbetsuJapan
| | - Kumiko Yamamoto
- Laboratory of Radiation Biology, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Asuka Tashiro
- Laboratory of Veterinary Physiology, School of Veterinary MedicineRakuno Gakuen UniversityEbetsuJapan
| | - Kosuke Nakazawa
- Laboratory of Veterinary Physiology, School of Veterinary MedicineRakuno Gakuen UniversityEbetsuJapan
| | - Osamu Inanami
- Laboratory of Radiation Biology, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Hiroshi Kitamura
- Laboratory of Veterinary Physiology, School of Veterinary MedicineRakuno Gakuen UniversityEbetsuJapan
| |
Collapse
|
4
|
Devaux JBL, Hickey AJR, Renshaw GMC. Mitochondrial plasticity in the cerebellum of two anoxia-tolerant sharks: contrasting responses to anoxia/reoxygenation. J Exp Biol 2019; 222:jeb.191353. [DOI: 10.1242/jeb.191353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 02/20/2019] [Indexed: 11/20/2022]
Abstract
Exposure to anoxia leads to rapid ATP depletion, alters metabolic pathways and exacerbates succinate accumulation. Upon re-oxygenation, the preferential oxidation of accumulated succinate most often impairs mitochondrial function. Few species can survive prolonged periods of hypoxia and anoxia at tropical temperatures and those that do may rely on mitochondria plasticity in response to disruptions to oxygen availability. Two carpet sharks, the epaulette shark (Hemiscyllium ocellatum; ES) and the grey carpet shark (Chiloscyllium punctatum; GCS) display different adaptive responses to prolonged anoxia: while the ES enters energy conserving metabolic depression, the GCS temporarily elevates its haematocrit prolonging oxygen delivery. High-resolution respirometry was used to investigate mitochondrial function in the cerebellum, a highly metabolically active organ that is oxygen sensitive and vulnerable to injury after anoxia/re-oxygenation (AR).
Succinate was titrated into cerebellar preparations in vitro, with or without pre-exposure to AR, then the activity of mitochondrial complexes was examined. Like most vertebrates, GCS mitochondria significantly increased succinate oxidation rates, with impaired complex I function post-AR. In contrast, ES mitochondria inhibited succinate oxidation rates and both complex I and II capacities were conserved, resulting in preservation of oxidative phosphorylation capacity post-AR.
Divergent mitochondrial plasticity elicited by elevated succinate post A/R parallels the inherently divergent physiological adaptations of these animals to prolonged anoxia, namely the absence (GCS) and presence of metabolic depression (ES). Since anoxia tolerance in these species also occurs at temperatures close to that of humans, examining their mitochondrial responses to AR could provide insights for novel interventions in clinical settings.
Collapse
Affiliation(s)
- Jules B. L. Devaux
- School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Anthony J. R. Hickey
- School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Gillian M. C. Renshaw
- Hypoxia and Ischemia Research Unit, School of Allied Sciences, Griffith University, Gold Coast campus, QLD 4222, Australia
| |
Collapse
|
5
|
Rebuffet E, Frick A, Järvå M, Törnroth-Horsefield S. Cell-free production and characterisation of human uncoupling protein 1-3. Biochem Biophys Rep 2017; 10:276-281. [PMID: 28955755 PMCID: PMC5614671 DOI: 10.1016/j.bbrep.2017.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/04/2017] [Accepted: 04/07/2017] [Indexed: 11/22/2022] Open
Abstract
The uncoupling proteins (UCPs) leak protons across the inner mitochondrial membrane, thus uncoupling the proton gradient from ATP synthesis. The main known physiological role for this is heat generation by UCP1 in brown adipose tissue. However, UCPs are also believed to be important for protection against reactive oxygen species, fine-tuning of metabolism and have been suggested to be involved in disease states such as obesity, diabetes and cancer. Structural studies of UCPs have long been hampered by difficulties in sample preparation with neither expression in yeast nor refolding from inclusion bodies in E. coli yielding sufficient amounts of pure and stable protein. In this study, we have developed a protocol for cell-free expression of human UCP1, 2 and 3, resulting in 1 mg pure protein per 20 mL of expression media. Lauric acid, a natural UCP ligand, significantly improved protein thermal stability and was therefore added during purification. Secondary structure characterisation using circular dichroism spectroscopy revealed the proteins to consist of mostly α-helices, as expected. All three UCPs were able to bind GDP, a well-known physiological inhibitor, as shown by the Fluorescence Resonance Energy Transfer (FRET) technique, suggesting that the proteins are in a natively folded state. A protocol for cell-free expression of human uncoupling protein 1–3 is described. Addition of native membrane components increased expression levels. Addition of lauric acid increased protein stability in solution. CD spectroscopy confirms alpha-helical secondary structure as expected. All proteins binds GDP as demonstrated by Fluorescence Resonance Energy Transfer.
Collapse
Affiliation(s)
- Etienne Rebuffet
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden
| | - Anna Frick
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden
| | - Michael Järvå
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden
| | - Susanna Törnroth-Horsefield
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden.,Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Box 124, 221 00 Lund, Sweden
| |
Collapse
|
6
|
Onukwufor JO, Stevens D, Kamunde C. Combined effects of cadmium, temperature and hypoxia-reoxygenation on mitochondrial function in rainbow trout (Oncorhynchus mykiss). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 182:129-141. [PMID: 27893995 DOI: 10.1016/j.aquatox.2016.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/16/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Although aquatic organisms face multiple environmental stressors that may interact to alter adverse outcomes, our knowledge of stressor-stressor interaction on cellular function is limited. We investigated the combined effects of cadmium (Cd), hypoxia-reoxygenation (H-R) and temperature on mitochondrial function. Liver mitochondria from juvenile rainbow trout were exposed to Cd (0-20μM) and H-R (0 and 5min) at 5, 13 and 25°C followed by measurements of mitochondrial Cd load, volume, complex І active (A)↔deactive (D) transition, membrane potential, ROS release and ultrastructural changes. At high temperature Cd exacerbated H-R-imposed reduction of maximal complex I (CI) respiration whereas at low temperature 5 and 10μM stimulated maximal CI respiration post H-R. The basal respiration showed a biphasic response at high temperatures with low Cd concentrations reducing the stimulatory effect of H-R and high concentrations enhancing this effect. At low temperature Cd monotonically enhanced H-R-induced stimulation of basal respiration. Cd and H-R reduced both the P/O ratio and the RCR at all 3 temperatures. Temperature rise alone increased mitochondrial Cd load and toxicity, but combined H-R and temperature exposure reduced mitochondrial Cd load but surprisingly exacerbated the mitochondrial dysfunction. Mitochondrial dysfunction induced by H-R was associated with swelling of the organelle and blocking of conversion of CІ D to A form. However, low amounts of Cd protected against H-R induced swelling and prevented the inhibition of H-R-induced CI D to A transition. Both H-R and Cd dissipated mitochondrial membrane potential Δψm and damaged mitochondrial structure. We observed increased reactive oxygen species (H2O2) release that together with the protection afforded by EGTA, vitamin E and N-acetylcysteine against the Δψm dissipation suggested direct involvement of Cd and oxidative stress. Overall, our findings indicate that mitochondrial sensitivity to Cd toxicity was enhanced by the effects of H-R and temperature, and changes in mitochondrial Cd load did not always explain this effect.
Collapse
Affiliation(s)
- John O Onukwufor
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Don Stevens
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
7
|
Onukwufor JO, Kibenge F, Stevens D, Kamunde C. Hypoxia-reoxygenation differentially alters the thermal sensitivity of complex I basal and maximal mitochondrial oxidative capacity. Comp Biochem Physiol A Mol Integr Physiol 2016; 201:87-94. [DOI: 10.1016/j.cbpa.2016.06.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/17/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
|
8
|
A Abdel-Rahman E, Mahmoud AM, Khalifa AM, Ali SS. Physiological and pathophysiological reactive oxygen species as probed by EPR spectroscopy: the underutilized research window on muscle ageing. J Physiol 2016; 594:4591-613. [PMID: 26801204 DOI: 10.1113/jp271471] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 12/04/2015] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen and nitrogen species (ROS and RNS) play crucial roles in triggering, mediating and regulating physiological and pathophysiological signal transduction pathways within the cell. Within the cell, ROS efflux is firmly controlled both spatially and temporally, making the study of ROS dynamics a challenging task. Different approaches have been developed for ROS assessment; however, many of these assays are not capable of direct identification or determination of subcellular localization of different ROS. Here we highlight electron paramagnetic resonance (EPR) spectroscopy as a powerful technique that is uniquely capable of addressing questions on ROS dynamics in different biological specimens and cellular compartments. Due to their critical importance in muscle functions and dysfunction, we discuss in some detail spin trapping of various ROS and focus on EPR detection of nitric oxide before highlighting how EPR can be utilized to probe biophysical characteristics of the environment surrounding a given stable radical. Despite the demonstrated ability of EPR spectroscopy to provide unique information on the identity, quantity, dynamics and environment of radical species, its applications in the field of muscle physiology, fatiguing and ageing are disproportionately infrequent. While reviewing the limited examples of successful EPR applications in muscle biology we conclude that the field would greatly benefit from more studies exploring ROS sources and kinetics by spin trapping, protein dynamics by site-directed spin labelling, and membrane dynamics and global redox changes by spin probing EPR approaches.
Collapse
Affiliation(s)
- Engy A Abdel-Rahman
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Ali M Mahmoud
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Abdulrahman M Khalifa
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Sameh S Ali
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
9
|
Onukwufor JO, MacDonald N, Kibenge F, Stevens D, Kamunde C. Effects of hypoxia-cadmium interactions on rainbow trout (Oncorhynchus mykiss) mitochondrial bioenergetics: attenuation of hypoxia-induced proton leak by low doses of cadmium. ACTA ACUST UNITED AC 2013; 217:831-40. [PMID: 24265424 DOI: 10.1242/jeb.093344] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The goal of the present study was to elucidate the modulatory effects of cadmium (Cd) on hypoxia/reoxygenation-induced mitochondrial dysfunction in light of the limited understanding of the mechanisms of multiple stressor interactions in aquatic organisms. Rainbow trout (Oncorhynchus mykiss) liver mitochondria were isolated and energized with complex I substrates (malate-glutamate), and exposed to hypoxia (0>PO2<2 Torr) for 0-60 min followed by reoxygenation and measurement of coupled and uncoupled respiration and complex I enzyme activity. Thereafter, 5 min hypoxia was used to probe interactions with Cd (0-20 μmol l(-1)) and to test the hypothesis that deleterious effects of hypoxia/reoxygenation on mitochondria were mediated by reactive oxygen species (ROS). Hypoxia/reoxygenation inhibited state 3 and uncoupler-stimulated (state 3u) respiration while concomitantly stimulating states 4 and 4ol (proton leak) respiration, thus reducing phosphorylation and coupling efficiencies. Low doses of Cd (≤5 μmol l(-1)) reduced, while higher doses enhanced, hypoxia-stimulated proton leak. This was in contrast to the monotonic enhancement by Cd of hypoxia/reoxygenation-induced reductions of state 3 respiration, phosphorylation efficiency and coupling. Mitochondrial complex I activity was inhibited by hypoxia/reoxygenation, hence confirming the impairment of at least one component of the electron transport chain (ETC) in rainbow trout mitochondria. Similar to the effect on state 4 and proton leak, low doses of Cd partially reversed the hypoxia/reoxygenation-induced complex I activity inhibition. The ROS scavenger and sulfhydryl group donor N-acetylcysteine, administrated immediately prior to hypoxia exposure, reduced hypoxia/reoxygenation-stimulated proton leak without rescuing the inhibited state 3 respiration, suggesting that hypoxia/reoxygenation influences distinct aspects of mitochondria via different mechanisms. Our results indicate that hypoxia/reoxygenation impairs the ETC and sensitizes mitochondria to Cd via mechanisms that involve, at least in part, ROS. Moreover, we provide, for the first time in fish, evidence for a hormetic effect of Cd on mitochondrial bioenergetics--the attenuation of hypoxia/reoxygenation-stimulated proton leak and partial rescue of complex I inhibition by low Cd doses.
Collapse
Affiliation(s)
- John O Onukwufor
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | | | | | | | | |
Collapse
|
10
|
Ceusters JD, Mouithys-Mickalad AA, Franck TJ, Deby-Dupont GP, Derochette S, Serteyn DA. Effect of different kinds of anoxia/reoxygenation on the mitochondrial function and the free radicals production of cultured primary equine skeletal myoblasts. Res Vet Sci 2013; 95:870-8. [PMID: 24099743 DOI: 10.1016/j.rvsc.2013.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 08/22/2013] [Accepted: 09/07/2013] [Indexed: 10/26/2022]
Abstract
Horses are outstanding athletes, performing in many different disciplines involving different kinds of efforts and metabolic responses. Depending on exercise intensity, their skeletal muscle oxygenation decreases, and the reperfusion at cessation of the exercise can cause excessive production of free radicals. This study on cultured primary equine myoblasts investigated the effect of different kinds of anoxia/reoxygenation (A/R) on routine respiration, mitochondrial complex I specific activity and free radicals production. Our data revealed that short cycles of A/R caused a decrease of all the parameters, opposite to what a single long period of anoxia did. A preconditioning-like effect could explain our first pattern of results whereas mild uncoupling could be more appropriate for the second one. Anyway, it seems that mitochondrial complex I could play a major role in the regulation of the balance between metabolic and antioxidant protection of the muscular function of athletic horses.
Collapse
Affiliation(s)
- Justine D Ceusters
- Center for Oxygen Research and Development, Institute of Chemistry B6a, University of Liège, Sart Tilman, 4000 Liège, Belgium.
| | | | | | | | | | | |
Collapse
|
11
|
Ceusters JD, Mouithys-Mickalad AA, Franck TJ, Derochette S, Vanderplasschen A, Deby-Dupont GP, Serteyn DA. Effect of myeloperoxidase and anoxia/reoxygenation on mitochondrial respiratory function of cultured primary equine skeletal myoblasts. Mitochondrion 2013; 13:410-6. [DOI: 10.1016/j.mito.2012.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/12/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022]
|
12
|
Figueira TR, Barros MH, Camargo AA, Castilho RF, Ferreira JCB, Kowaltowski AJ, Sluse FE, Souza-Pinto NC, Vercesi AE. Mitochondria as a source of reactive oxygen and nitrogen species: from molecular mechanisms to human health. Antioxid Redox Signal 2013; 18:2029-74. [PMID: 23244576 DOI: 10.1089/ars.2012.4729] [Citation(s) in RCA: 315] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitochondrially generated reactive oxygen species are involved in a myriad of signaling and damaging pathways in different tissues. In addition, mitochondria are an important target of reactive oxygen and nitrogen species. Here, we discuss basic mechanisms of mitochondrial oxidant generation and removal and the main factors affecting mitochondrial redox balance. We also discuss the interaction between mitochondrial reactive oxygen and nitrogen species, and the involvement of these oxidants in mitochondrial diseases, cancer, neurological, and cardiovascular disorders.
Collapse
Affiliation(s)
- Tiago R Figueira
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Appukuttan A, Kasseckert SA, Kumar S, Reusch HP, Ladilov Y. Oxysterol-induced apoptosis of smooth muscle cells is under the control of a soluble adenylyl cyclase. Cardiovasc Res 2013; 99:734-42. [PMID: 23729662 DOI: 10.1093/cvr/cvt137] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Apoptosis of vascular smooth muscle cells (VSMC) in advanced atherosclerotic plaques is an important cause of plaque instability. Oxysterols have been suggested as important inducers of apoptosis in VSMC, but the precise mechanism is still poorly understood. Here we aimed to analyse the role of the soluble adenylyl cyclase (sAC). METHODS AND RESULTS VSMC derived from rat aorta were treated with either 25-hydroxycholesterol or 7-ketocholesterol for 24 h. Apoptosis was detected by TUNEL staining and caspases cleavage. Oxysterols treatment led to the activation of the mitochondrial pathway of apoptosis (cytochrome c release and caspase-9 cleavage) and mitochondrial ROS formation, which were suppressed by the pharmacological inhibition or knockdown of sAC. Scavenging ROS with N-acetyl-l-cysteine prevented oxysterol-induced apoptosis. Analyses of the downstream pathway suggest that protein kinase A (PKA)-dependent phosphorylation and the mitochondrial translocation of the pro-apoptotic protein Bax is a key link between sAC and oxysterol-induced ROS formation and apoptosis. To distinguish between intra-mitochondrial and extra-mitochondrial/cytosolic sAC pools, sAC was overexpressed in mitochondria or in the cytosol. sAC expression in the cytosol, but not in mitochondria, significantly promoted apoptosis and ROS formation during oxysterol treatment. CONCLUSION These results suggest that the sAC/PKA axis plays a key role in the oxysterol-induced apoptosis of VSMC by controlling mitochondrial Bax translocation and ROS formation and that cytosolic sAC, rather than the mitochondrial pool, is involved in the apoptotic mechanism.
Collapse
|
14
|
Moghtadaei M, Habibey R, Ajami M, Soleimani M, Ebrahimi SA, Pazoki-Toroudi H. Skeletal muscle post-conditioning by diazoxide, anti-oxidative and anti-apoptotic mechanisms. Mol Biol Rep 2012; 39:11093-103. [PMID: 23053996 DOI: 10.1007/s11033-012-2015-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 10/01/2012] [Indexed: 11/27/2022]
Abstract
Pretreatment with diazoxide, K(ATP) channel opener, increases tissue tolerance against ischemia reperfusion (IR) injury. In clinical settings pretreatment is rarely an option therefore we evaluated the effect of post-ischemic treatment with diazoxide on skeletal muscle IR injury. Rats were treated with either saline, diazoxide (K(ATP) opener; 40 mg/kg) or 5-hydroxydecanoate (5-HD; mitochondrial K(ATP) inhibitor; 40 mg/kg) after skeletal muscle ischemia (3 h) and reperfusion (6, 24 or 48 h). Tissue contents of malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) activities, Bax and Bcl-2 protein expression and muscle histology were determined. Apoptosis was examined (24 and 48 h) after ischemia. IR induced severe histological damage, increased MDA content and Bax expression (24 and 48 h; p < 0.01) and decreased CAT and SOD activities (6 and 24 h, p < 0.01 and 48 h, p < 0.05), with no significant effect on Bcl-2 expression. Diazoxide reversed IR effects on MDA (6 and 24 h; p < 0.05), SOD (6 and 24 h; p < 0.01) and CAT (6 and 48 h, p < 0.05 and 24 h p < 0.01) and tissue damage. Diazoxide also decreased Bax (24 and 48 h; p < 0.05) and increased Bcl-2 protein expression (24 and 48 h; p < 0.01). Post-ischemic treatment with 5-HD had no significant effect on IR injury. Number of apoptotic nuclei in IR and 5-HD treated groups significantly increased (p < 0.001) while diazoxide decreased apoptosis (p < 0.01). The results suggested that post-ischemic treatment with diazoxide decrease oxidative stress in acute phase which modulates expression of apoptotic proteins in the late phase of reperfusion injury. Involvement of KATP channels in this effect require further evaluations.
Collapse
Affiliation(s)
- Mehdi Moghtadaei
- Department of Orthopedic Surgery, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
15
|
Ivanina AV, Kurochkin IO, Leamy L, Sokolova IM. Effects of temperature and cadmium exposure on the mitochondria of oysters (Crassostrea virginica) exposed to hypoxia and subsequent reoxygenation. ACTA ACUST UNITED AC 2012; 215:3142-54. [PMID: 22660786 DOI: 10.1242/jeb.071357] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Intertidal bivalves are commonly exposed to multiple stressors including periodic hypoxia, temperature fluctuations and pollution, which can strongly affect energy metabolism. We used top-down control and elasticity analyses to determine the interactive effects of intermittent hypoxia, cadmium (Cd) exposure and acute temperature stress on mitochondria of the eastern oyster Crassostrea virginica. Oysters were acclimated at 20°C for 30 days in the absence or presence of 50 μg l(-1) Cd and then subjected to a long-term hypoxia (6 days at <0.5% O(2) in seawater) followed by normoxic recovery. Mitochondrial function was assessed at the acclimation temperature (20°C), or at elevated temperature (30°C) mimicking acute temperature stress in the intertidal zone. In the absence of Cd or temperature stress, mitochondria of oysters showed high resilience to transient hypoxia. In control oysters at 20°C, hypoxia/reoxygenation induced elevated flux capacity of all three studied mitochondrial subsystems (substrate oxidation, phosphorylation and proton leak) and resulted in a mild depolarization of resting mitochondria. Elevated proton conductance and enhanced capacity of phosphorylation and substrate oxidation subsystems may confer resistance to hypoxia/reoxygenation stress in oyster mitochondria by alleviating production of reactive oxygen species and maintaining high aerobic capacity and ATP synthesis rates during recovery. Exposure to environmental stressors such as Cd and elevated temperatures abolished the putative adaptive responses of the substrate oxidation and phosphorylation subsystems, and strongly enhanced proton leak in mitochondria of oysters subjected to hypoxia/reoxygenation stress. Our findings suggest that Cd exposure and acute temperature stress may lead to the loss of mitochondrial resistance to hypoxia and reoxygenation and thus potentially affect the ability of oysters to survive periodic oxygen deprivation in coastal and estuarine habitats.
Collapse
Affiliation(s)
- Anna V Ivanina
- Department of Biology, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA
| | | | | | | |
Collapse
|
16
|
Ceusters JD, Mouithys-Mickalad AA, de la Rebière de Pouyade G, Franck TJ, Votion DM, Deby-Dupont GP, Serteyn DA. Assessment of reactive oxygen species production in cultured equine skeletal myoblasts in response to conditions of anoxia followed by reoxygenation with or without exposure to peroxidases. Am J Vet Res 2012; 73:426-34. [DOI: 10.2460/ajvr.73.3.426] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Sluse FE. Uncoupling proteins: molecular, functional, regulatory, physiological and pathological aspects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:137-56. [PMID: 22399421 DOI: 10.1007/978-94-007-2869-1_6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Uncoupling proteins are a subfamily of the mitochondrial anion carrier family. They are widespread in the whole eukaryotic world with a few exceptions and present tissue specific isoforms in higher organisms. They mediate purine nucleotide-sensitive free fatty acid-activated proton inward flux through the inner mitochondrial membrane. This proton flux occurs at the expense of the proton motive force build up by the respiration and weakens the coupling between respiration and ATP synthesis. In this chapter we describe current and reliable knowledge of uncoupling proteins. A new methodology allowing study of their activity and regulation during phosphorylating respiration is described. It has entitled us to assert that all uncoupling proteins share common mechanisms of activation and regulation. This is of the utmost importance in order to understand the physiological roles of UCPs as well as their participation in pathological processes since every role of the UCPs in every cell is an integral part of their function and regulation. The central role of reduction level of ubiquinone in the control of their regulation is well-argued. Their potential and reliable roles in thermogenesis, reactive oxygen species prevention and energy flow are discussed as well as their role in some pathological disorders.
Collapse
Affiliation(s)
- Francis E Sluse
- Department of Life Sciences, University of Liege, Liege, Belgium.
| |
Collapse
|
18
|
Greco T, Fiskum G. Brain mitochondria from rats treated with sulforaphane are resistant to redox-regulated permeability transition. J Bioenerg Biomembr 2011; 42:491-7. [PMID: 21061051 DOI: 10.1007/s10863-010-9312-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 10/21/2010] [Indexed: 11/25/2022]
Abstract
Oxidative stress promotes Ca2+-dependent opening of the mitochondrial inner membrane permeability transition pore (PTP), causing bioenergetic failure and subsequent cell death in many paradigms, including those related to acute brain injury. One approach to pre-conditioning against oxidative stress is pharmacologic activation of the Nrf2/ARE pathway of antioxidant gene expression by agents such as sulforaphane (SFP). This study tested the hypothesis that administration of SFP to normal rats increases resistance of isolated brain mitochondria to redox-sensitive PTP opening. SFP or DMSO vehicle was administered intraperitoneally to adult male rats at 10 mg/kg 40 h prior to isolation of non-synaptic brain mitochondria. Mitochondria were suspended in medium containing a respiratory substrate and were exposed to an addition of Ca2+ below the threshold for PTP opening. Subsequent addition of tert-butyl hydroperoxide (tBOOH) resulted in a cyclosporin A-inhibitable release of accumulated Ca2+ into the medium, as monitored by an increase in fluorescence of Calcium Green 5N within the medium, and was preceded by a decrease in the autofluorescence of mitochondrial NAD(P)H. SFP treatment significantly reduced the rate of tBOOH-induced Ca2+ release but did not affect NAD(P)H oxidation or inhibit PTP opening induced by the addition of phenylarsine oxide, a direct sulfhydryl oxidizing agent. SFP treatment had no effect on respiration by brain mitochondria and had no effect on PTP opening or respiration when added directly to isolated mitochondria. We conclude that SFP confers resistance of brain mitochondria to redox-regulated PTP opening, which could contribute to neuroprotection observed with SFP.
Collapse
Affiliation(s)
- Tiffany Greco
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research, Baltimore, MD, USA
| | | |
Collapse
|
19
|
Kurochkin IO, Ivanina AV, Eilers S, Downs CA, May LA, Sokolova IM. Cadmium affects metabolic responses to prolonged anoxia and reoxygenation in eastern oysters (Crassostrea virginica). Am J Physiol Regul Integr Comp Physiol 2009; 297:R1262-72. [DOI: 10.1152/ajpregu.00324.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Benthic marine organisms such as mollusks are often exposed to periodic oxygen deficiency (due to the tidal exposure and/or seasonal expansion of the oxygen-deficient dead zones) and pollution by metals [e.g., cadmium, (Cd)]. These stressors can strongly affect mollusks' survival; however, physiological mechanisms of their combined effects are not fully understood. We studied the effects of Cd exposure on metabolic responses to prolonged anoxia and subsequent recovery in anoxia-tolerant intertidal mollusks Crassostrea virginica (eastern oysters). Anoxia led to an onset of anaerobiosis indicated by accumulation of l-alanine, acetate, and succinate. Prolonged anoxia (for 6 days) caused a decline in the maximum activity of electron transport chain and ADP-stimulated ( state 3) oxygen uptake by mitochondria (MO2), but no change in the resting ( state 4) MO2 of oyster mitochondria, along with a slight but significant reduction of mitochondrial respiratory control ratio. During reoxygenation, there was a significant overshoot of mitochondrial MO2 (by up to 70% above the normoxic steady-state values) in control oysters. Mild mitochondrial uncoupling during prolonged shutdown in anoxic tissues and a subsequent strong stimulation of mitochondrial flux during recovery may help to rapidly restore redox status and protect against elevated reactive oxygen species formation in oysters. Exposure to Cd inhibits anaerobic metabolism, abolishes reoxygenation-induced stimulation of mitochondrial MO2, and leads to oxidative stress (indicated by accumulation of DNA lesions) and a loss of mitochondrial capacity during postanoxic recovery. This may result in increased sensitivity to intermittent hypoxia and anoxia in Cd-exposed mollusks and will have implications for their survival in polluted estuaries and coastal zones.
Collapse
Affiliation(s)
- I. O. Kurochkin
- Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - A. V. Ivanina
- Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - S. Eilers
- Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina
- Hochschule Bremen, Bremen, Germany
| | - C. A. Downs
- Haereticus Environmental Laboratory, Clifford, Virginia
| | - L. A. May
- JHT, Inc., Contractor for National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research, Hollings Marine Laboratory, Charleston, South Carolina
| | - I. M. Sokolova
- Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina
| |
Collapse
|
20
|
Pardo Andreu GL, Inada NM, Vercesi AE, Curti C. Uncoupling and oxidative stress in liver mitochondria isolated from rats with acute iron overload. Arch Toxicol 2008; 83:47-53. [PMID: 18560806 DOI: 10.1007/s00204-008-0322-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 05/21/2008] [Indexed: 12/17/2022]
Abstract
One hypothesis for the etiology of cell damage arising from iron overload is that its excess selectively affects mitochondria. Here we tested the effects of acute iron overload on liver mitochondria isolated from rats subjected to a single dose of i.p. 500 mg/kg iron-dextran. The treatment increased the levels of iron in mitochondria (from 21 +/- 4 to 130 +/- 7 nmol/mg protein) and caused both lipid peroxidation and glutathione oxidation. The mitochondria of iron-treated rats showed lower respiratory control ratio in association with higher resting respiration. The mitochondrial uncoupling elicited by iron-treatment did not affect the phosphorylation efficiency or the ATP levels, suggesting that uncoupling is a mitochondrial protective mechanism against acute iron overload. Therefore, the reactive oxygen species (ROS)/H+ leak couple, functioning as a mitochondrial redox homeostatic mechanism could play a protective role in the acutely iron-loaded mitochondria.
Collapse
Affiliation(s)
- G L Pardo Andreu
- Departamento de Investigaciones Biomédicas, Centro de Química Farmacéutica, Calle 200, Esq. 21, Playa, CP 11600, Ciudad de La Habana, Cuba.
| | | | | | | |
Collapse
|
21
|
McAllister SE, Ashrafpour H, Cahoon N, Huang N, Moses MA, Neligan PC, Forrest CR, Lipa JE, Pang CY. Postconditioning for salvage of ischemic skeletal muscle from reperfusion injury: efficacy and mechanism. Am J Physiol Regul Integr Comp Physiol 2008; 295:R681-9. [PMID: 18509099 DOI: 10.1152/ajpregu.90303.2008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We tested our hypothesis that postischemic conditioning (PostC) is effective in salvage of ischemic skeletal muscle from reperfusion injury and the mechanism involves inhibition of opening of the mitochondrial permeability transition pore (mPTP). In bilateral 8x13 cm pig latissimus dorsi muscle flaps subjected to 4 h ischemia, muscle infarction increased from 22+/-4 to 41+/-1% between 2 and 24 h reperfusion and remained unchanged at 48 (38+/-6%) and 72 (40+/-1%) h reperfusion (P<0.05; n=4 pigs). PostC induced by four cycles of 30-s reperfusion/reocclusion at the onset of reperfusion after 4 h ischemia reduced muscle infarction from 44+/-2 to 22+/-2% at 48 h reperfusion. This infarct protective effect of PostC was mimicked by intravenous injection of the mPTP opening inhibitor cyclosporin A or NIM-811 (10 mg/kg) at 5 min before the end of 4 h ischemia and was abolished by intravenous injection of the mPTP opener atractyloside (10 mg/kg) at 5 min before PostC (P<0.05; n=4-5 pigs). PostC or intravenous cyclosporin A injection at 5 min before reperfusion caused a decrease in muscle myeloperoxidase activity and mitochondrial free Ca2+ concentration and an increase in muscle ATP content after 4 h ischemia and 2 h reperfusion compared with the time-matched controls. These effects of PostC were abolished by intravenous injection of atractyloside at 5 min before PostC (P<0.05; n=6 pigs). These observations support our hypothesis that PostC is effective in salvage of ischemic skeletal muscle from reperfusion injury and the mechanism involves inhibition of opening of the mPTP.
Collapse
Affiliation(s)
- Sandra E McAllister
- Research Institute, The Hospital for Sick Children and Department of Surgery, University of Toronto, 555 University Ave., Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jung ME, Simpkins JW, Wilson AM, Downey HF, Mallet RT. Intermittent hypoxia conditioning prevents behavioral deficit and brain oxidative stress in ethanol-withdrawn rats. J Appl Physiol (1985) 2008; 105:510-7. [PMID: 18499779 DOI: 10.1152/japplphysiol.90317.2008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intermittent hypoxia (IH) has been found to protect brain from ischemic injury. We investigated whether IH mitigates brain oxidative stress and behavioral deficits in rats subjected to ethanol intoxication and abrupt ethanol withdrawal (EW). The effects of IH on overt EW behavioral signs, superoxide generation, protein oxidation, and mitochondrial permeability transition pore (PTP) opening were examined. Male rats consumed dextrin or 6.5% (wt/vol) ethanol for 35 days. During the last 20 days, rats were treated with repetitive (5-8 per day), brief (5-10 min) cycles of hypoxia (9.5-10% inspired O2) separated by 4-min normoxia exposures. Cerebellum, cortex, and hippocampus were biopsied on day 35 of the diet or at 24 h of EW. Superoxide and protein carbonyl contents in tissue homogenates and absorbance decline at 540 nm in mitochondrial suspensions served as indicators of oxidative stress, protein oxidation, and PTP opening, respectively. Although IH altered neither ethanol consumption nor blood ethanol concentration, it sharply lowered the severity of EW signs including tremor, tail rigidity, and startle response. Compared with dextrin and ethanol per se, in the three brain regions, EW increased superoxide and protein carbonyl contents and accelerated PTP opening in a manner ameliorated by IH. Administration of antioxidant N-acetylcysteine throughout the IH program abrogated the reductions in EW signs and superoxide content, implicating IH-induced ROS as mediators of the salutary adaptations. We conclude that IH conditioning during chronic ethanol consumption attenuates oxidative damage to the brain and mitigates behavioral abnormalities during subsequent EW. IH-induced ROS may evoke this powerful protection.
Collapse
Affiliation(s)
- Marianna E Jung
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107-2699, USA
| | | | | | | | | |
Collapse
|
23
|
Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B. Effects of dietary nitrate on oxygen cost during exercise. Acta Physiol (Oxf) 2007; 191:59-66. [PMID: 17635415 DOI: 10.1111/j.1748-1716.2007.01713.x] [Citation(s) in RCA: 428] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM Nitric oxide (NO), synthesized from l-arginine by NO synthases, plays a role in adaptation to physical exercise by modulating blood flow, muscular contraction and glucose uptake and in the control of cellular respiration. Recent studies show that NO can be formed in vivo also from the reduction of inorganic nitrate (NO(3) (-)) and nitrite (NO(2) (-)). The diet constitutes a major source of nitrate, and vegetables are particularly rich in this anion. The aim of this study was to investigate if dietary nitrate had any effect on metabolic and circulatory parameters during exercise. METHOD In a randomized double-blind placebo-controlled crossover study, we tested the effect of dietary nitrate on physiological and metabolic parameters during exercise. Nine healthy young well-trained men performed submaximal and maximal work tests on a cycle ergometer after two separate 3-day periods of dietary supplementation with sodium nitrate (0.1 mmol kg(-1) day-1) or an equal amount of sodium chloride (placebo). RESULTS The oxygen cost at submaximal exercise was reduced after nitrate supplementation compared with placebo. On an average Vo(2) decreased from 2.98 +/- 0.57 during CON to 2.82 +/- 0.58 L min(-1) during NIT (P < 0.02) over the four lowest submaximal work rates. Gross efficiency increased from 19.7 +/- 1.6 during CON to 21.1 +/- 1.3% during NIT (P < 0.01) over the four lowest work rates. There was no difference in heart rate, lactate [Hla], ventilation (VE), VE/Vo(2) or respiratory exchange ratio between nitrate and placebo during any of the submaximal work rates. CONCLUSION We conclude that dietary nitrate supplementation, in an amount achievable through a diet rich in vegetables, results in a lower oxygen demand during submaximal work. This highly surprising effect occurred without an accompanying increase in lactate concentration, indicating that the energy production had become more efficient. The mechanism of action needs to be clarified but a likely first step is the in vivo reduction of dietary nitrate into bioactive nitrogen oxides including nitrite and NO.
Collapse
Affiliation(s)
- F J Larsen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
24
|
Nicholls DG, Johnson-Cadwell L, Vesce S, Jekabsons M, Yadava N. Bioenergetics of mitochondria in cultured neurons and their role in glutamate excitotoxicity. J Neurosci Res 2007; 85:3206-12. [PMID: 17455297 DOI: 10.1002/jnr.21290] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The pathologic activation of NMDA receptors by glutamate is a major contributor to neuronal cell death after stroke. Receptor activation causes a massive influx of calcium into the neuron that is accumulated by the mitochondria. The favored hypothesis is that the calcium loaded mitochondria generate reactive oxygen species that damage and ultimately killed the neuron. In this review this hypothesis is critically re-examined with an emphasis on the role played by deficits in ATP generation. Novel techniques are developed to monitor the bioenergetic status of in situ mitochondria in cultured neurons. Applying these techniques to a model of glutamate excitotoxicity suggests that enhanced reactive oxygen species are a consequence rather than a cause of failed cytoplasmic calcium homeostasis (delayed calcium deregulation, [DCD]), but that prior oxidative damage facilitates DCD by damaging mitochondrial ATP generation. This impacts on current hypotheses relating to the neuroprotective effects of mild mitochondrial uncoupling.
Collapse
|