1
|
Zhang C, Yan Q, Li J, Zhu Y, Zhang Y. Nanoenabled Tumor Oxygenation Strategies for Overcoming Hypoxia-Associated Immunosuppression. ACS APPLIED BIO MATERIALS 2021; 4:277-294. [PMID: 35014284 DOI: 10.1021/acsabm.0c01328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cancer immunotherapy, which initiates or strengthens innate immune responses to attack cancer cells, has shown great promise in cancer treatment. However, low immune response impacted by immunosuppressive tumor microenvironment (TME) remains a key challenge, which has been found related to tumor hypoxia. Recently, nanomaterial systems are proving to be excellent platforms for tumor oxygenation, which can reverse hypoxia-associated immunosuppression, strengthen the systemic antitumor immune responses, and thus afford a striking abscopal effect to clear metastatic cancer cells. In this review, we would like to survey recent progress in utilizing nanomaterials for tumor oxygenation through approaches such as in situ O2 generation, O2 delivery, tumor vasculature normalization, and mitochondrial-respiration inhibition. Their effects on tumor hypoxia-associated immunosuppression are highlighted. We also discuss the ongoing challenges and how to further improve the clinical prospect of cancer immunotherapy.
Collapse
Affiliation(s)
- Chao Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qinglong Yan
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiang Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.,Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Ying Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.,Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yu Zhang
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
2
|
Zuo H, Hou Y, Yu Y, Li Z, Liu H, Liu C, He J, Miao L. Circumventing Myeloid-Derived Suppressor Cell-Mediated Immunosuppression Using an Oxygen-Generated and -Economized Nanoplatform. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55723-55736. [PMID: 33274915 DOI: 10.1021/acsami.0c18180] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The myeloid-derived suppressor cell (MDSC)-mediated immunosuppressive tumor microenvironment (TME), where tumor hypoxia counts for much, has greatly compromised the outcome of cancer immunotherapy. Here, we demonstrated a strategy for selectively clearing intratumoral MDSCs. Specifically, 2-[2-[2-chloro-3-[(1,3-dihydro-3,3-dimethyl-1-propyl-2H-indol-2-ylidene)ethylidene]-1-cyclohexen-1-yl]ethenyl]-3,3-dimethyl-1-propylindolium iodide (IR-780) and metformin (Met) were coloaded into mesoporous silica nanoparticles (MSNs) with CeO2 as the gatekeepers. Controlled release of cargos was achieved upon etching CeO2 with endogenous H2O2. Apart from the drug release, oxygen (O2) was also generated in this process. Importantly, the engagement of Met significantly inhibited mitochondrial respiration, thus working like an O2 economizer. Consequently, the populations and functions of tumor-infiltrated MDSCs were both dramatically reduced through selective alleviation of hypoxia at tumor sites, thus contributing to boosted immune responses. Additionally, the accumulated O2 enhanced IR780-mediated photodynamic therapy, which synergistically strengthened the antitumor efficacy of the platform. To the best of our knowledge, this is the first time to employ an O2-generated and -economized nanoplatform for selectively anergizing MDSC-mediated immunosuppression. We expect that this strategy will shed new light on the clinical cancer immunotherapy treatment.
Collapse
Affiliation(s)
- Huaqin Zuo
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210093, P. R. China
- Department of Hematology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu 225001, P. R. China
| | - Yuchen Hou
- Department of Liver Surgery, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Yijun Yu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Zhongqiu Li
- Department of Organ Transplantation, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, P. R. China
| | - Hanxiao Liu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Chao Liu
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Jian He
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu 210008, P. R. China
| | - Leiying Miao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| |
Collapse
|
3
|
Integration of immunogenic activation and immunosuppressive reversion using mitochondrial-respiration-inhibited platelet-mimicking nanoparticles. Biomaterials 2019; 232:119699. [PMID: 31891817 DOI: 10.1016/j.biomaterials.2019.119699] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/20/2019] [Accepted: 12/16/2019] [Indexed: 12/28/2022]
Abstract
Here, we developed platelet membranes (PM) as nano-carriers to co-encapsulate metformin (Met) and IR780 (PM-IR780-Met NPs). The resulting nano-carrier ensured a longer circulation lifetime and facilitated the greater accumulation of IR780 and Met in tumors owing to the active adhesion between PM and tumor cells. As a photodynamic therapy (PDT) agent, IR780 could effectively kill the tumor by producing toxic reactive singlet oxygen species (ROS), while the introduction of Met inhibited mitochondrial respiration and reduced tumor oxygen consumption, thereby evoking an oxygen-boosted PDT and propelling the immunogenic cell death (ICD)-based immunogenic pathway. Meanwhile, the reversed tumor hypoxia also impeded the myeloid derived suppressor cell (MDSC)-regulated immunosuppressive pathway. Finally, tremendous T cells were recruited and activated, providing a promising platform to eliminate the primary tumors and synchronously opening a new avenue for the effective ablation of tumor metastasis.
Collapse
|
4
|
Zhang F, Thakur K, Hu F, Zhang JG, Wei ZJ. Cross-talk between 10-gingerol and its anti-cancerous potential: a recent update. Food Funct 2017; 8:2635-2649. [PMID: 28745358 DOI: 10.1039/c7fo00844a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Since time immortal, ginger, as an ancient herb, has been used throughout the world in foods and beverages due to its typical strong and pungent flavor. Besides its use as a spice, it also serves as an excellent source of several bioactive phenolics, including nonvolatile pungent compounds, such as gingerols, paradols, shogaols, and gingerones. Gingerols constitute key ingredients in fresh ginger, with the most abundant being 6-gingerol (6-G), 8-gingerol (8-G), and 10-gingerol (10-G). Many studies have investigated the various valuable pharmacological properties of these ingredients and experimentally verified the mechanistic aspects of their health effects; however, to date, most research on the anti-cancerous activities of gingerols have focused largely on 6-G. Thus, the present article deals with the number of recent studies that have indicated and highlighted the role of 10-G with respect to its cancer prevention attributes in particular and its anti-inflammatory, anti-oxidant, anti-microbial, and gastrointestinal tract protective potential in general. The purpose of this review is to provide an overview of all the experimentally validated health benefits of 10-G for nutraceutical applications. The various findings have warranted the further investigation of 10-G and its possible use in various cancer treatments as well as its promising role as a chemo-preventive agent.
Collapse
Affiliation(s)
- Fang Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Kiran Thakur
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Fei Hu
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Jian-Guo Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Zhao-Jun Wei
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| |
Collapse
|
5
|
Bernard MM, McConnery JR, Hoskin DW. [10]-Gingerol, a major phenolic constituent of ginger root, induces cell cycle arrest and apoptosis in triple-negative breast cancer cells. Exp Mol Pathol 2017; 102:370-376. [PMID: 28315687 DOI: 10.1016/j.yexmp.2017.03.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 11/30/2022]
Abstract
The ginger rhizome is rich in bioactive compounds, including [6]-gingerol, [8]-gingerol, and [10]-gingerol; however, to date, most research on the anti-cancer activities of gingerols have focused on [6]-gingerol. In this study, we compared [10]-gingerol with [8]-gingerol and [6]-gingerol in terms of their ability to inhibit the growth of human and mouse mammary carcinoma cells. A colorimetric assay based on the enzymatic reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide revealed that [10]-gingerol was more potent than [6]-gingerol and at least as potent as [8]-gingerol for the inhibition of triple-negative human (MDA-MB-231, MDA-MB-468) and mouse (4T1, E0771) mammary carcinoma cell growth. Further investigation of [10]-gingerol showed that it suppressed the growth of estrogen receptor-bearing (MCF-7, T47D) and HER2-overexpressing (SKBR3) breast cancer cells. The inhibitory effect of [10]-gingerol on the growth of MDA-MB-231 cells was associated with a reduction in the number of rounds of cell division and evidence of S phase-cell cycle arrest, as well as induction of apoptosis due to mitochondrial outer membrane permeabilization and the release of proapoptotic mitochondrial cytochrome c and SMAC/DIABLO into the cytoplasm. Surprisingly, killing of MDA-MB-231 cells by [10]-gingerol was not affected by a pan-caspase inhibitor (zVAD-fmk) or an anti-oxidant (N-acetylcysteine), suggesting that the cytotoxic effect of [10]-gingerol did not require caspase activation or the accumulation of reactive oxygen species. These findings suggest that further investigation of [10]-gingerol is warranted for its possible use in the treatment of breast cancer.
Collapse
Affiliation(s)
- Megan M Bernard
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jason R McConnery
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - David W Hoskin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Department of Pathology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Department of Surgery, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
6
|
Hsu YC, Chiang JH, Yu CS, Hsia TC, Wu RSC, Lien JC, Lai KC, Yu FS, Chung JG. Antitumor effects of deguelin on H460 human lung cancer cells in vitro and in vivo: Roles of apoptotic cell death and H460 tumor xenografts model. ENVIRONMENTAL TOXICOLOGY 2017; 32:84-98. [PMID: 26592500 DOI: 10.1002/tox.22214] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 10/16/2015] [Accepted: 10/18/2015] [Indexed: 06/05/2023]
Abstract
Deguelin, a naturally occurring rotenoid of the flavonoid family, is known to be an Akt inhibitor, to have chemopreventive activities and anti-tumor effect on several cancers. In this study, investigation to elucidate the effect of deguelin on apoptotic pathways in human lung cancer cells and on the anti-tumor effect in lung cancer xenograft nu/nu mice was performed. In vitro studies, found that deguelin induced cell morphological changes, and decreased the percentage of viability through the induction of apoptosis in H460 lung cancer cells. Deguelin triggered apoptosis in H460 cells was also confirmed by DAPI staining, DNA gel electrophoresis, and Annexin V-FITC staining and these effects are dose-dependent manners. It was also found that deguelin promoted the Ca2+ production and activation of caspase-3 but decreased the level of ΔΨm in H460 cells. Western blots indicated that the protein levels of cytochrome c, AIF, and pro-apoptotic Bax and Bak protein were increased, but the anti-apoptotic Bcl-2 and Bcl-x were decreased that may have led to apoptosis in H460 cells after exposure to deguelin. It was also confirmed by confocal laser microscope examination that deguelin promoted the release of AIF from mitochondria to cytosol. In vivo studies, found that in immunodeficient nu/nu mice bearing H460 tumor xenografts showed that the deguelin significantly suppressed tumor growth. Deguelin might be a potential therapeutic agent for the treatment of lung cancer in the future. This finding might fully support a critical event for deguelin via induction of apoptotic cell death and H460 tumor xenografts model against human lung cancer. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 84-98, 2017.
Collapse
Affiliation(s)
- Yu-Chieh Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
| | - Jo-Hua Chiang
- Department of Nursing, Chung-Jen Junior College of Nursing, Health Sciences and Management, Chiayi County, 62241, Taiwan
| | - Chun-Shu Yu
- School of Pharmacy, China Medical University, Taichung, 404, Taiwan
| | - Te-Chun Hsia
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
- Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Rick Sai-Chuen Wu
- Department of Anesthesiology, China Medical University Hospital, Taichung, 404, Taiwan
| | - Jin-Cherng Lien
- School of Pharmacy, China Medical University, Taichung, 404, Taiwan
| | - Kuang-Chi Lai
- School of Medicine, China Medical University Hospital, Taichung, 404, Taiwan
- Department of Surgery, China Medical University Beigang Hospital, Yunlin, 651, Taiwan
| | - Fu-Shun Yu
- School of Dentist, China Medical University, Taichung, 404, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| |
Collapse
|
7
|
Bo P, Lien JC, Chen YY, Yu FS, Lu HF, Yu CS, Chou YC, Yu CC, Chung JG. Allyl Isothiocyanate Induces Cell Toxicity by Multiple Pathways in Human Breast Cancer Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:415-37. [PMID: 27080949 DOI: 10.1142/s0192415x16500245] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Isothiocyanates (ITCs) occur in many cruciferous vegetables. These compounds, which have significant anticancer actions, can induce apoptosis in different human cancer cell lines. In the present study, we investigated if allyl isothiocyanate (AITC) would induce toxicity in human breast cancer MCF-7 (estrogen receptor positive) and MDA-MB-231 (estrogen receptor negative) cells. We found that AITC stimulated reactive oxygen species and Ca[Formula: see text] production, and decreased the mitochondrial membrane potential. Activity of caspase-8, -9 and -3 was increased by AITC in both cell lines. AITC also induced mitochondrial-mediated apoptosis, as shown by cytochrome c, AIF and Endo G release from mitochondria, activation of caspase-9 and caspase-3, and formation of DAPI-positive cells. There was a significant reduction in the levels of the anti-apoptotic protein Bcl-2 along with a marked increase in the pro-apoptotic protein Bax in both cell lines. AITC induced apoptosis in human breast cancer MCF-7 cells via AIF and Endo G signaling pathways, but in MDA-MB-231 cells apoptosis occurred via the GADD153 pathway. This study has revealed novel anti-cancer mechanisms of AITC, a compound that is ordinarily present in human diets and may have potential therapeutic effects in various cancers.
Collapse
Affiliation(s)
- Peng Bo
- * Departments of Biological Science and Technology
| | | | - Ya-Yin Chen
- ¶ Department of Chinese-Western Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.,∥ School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | | | - Hsu-Feng Lu
- ** Departments of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Chun-Shu Yu
- § School of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Yu-Cheng Chou
- †† Division of Neurosurgical Oncology, Neurological Institute, Taichung Veterans General Hospital, Taichung 407, Taiwan.,‡‡ National Defense Medical Center, Taipei 114, Taiwan
| | - Chien-Chih Yu
- § School of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Jing-Gung Chung
- * Departments of Biological Science and Technology.,§§ Department of Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
8
|
Shiue YW, Lu CC, Hsiao YP, Liao CL, Lin JP, Lai KC, Yu CC, Huang YP, Ho HC, Chung JG. Casticin Induced Apoptosis in A375.S2 Human Melanoma Cells through the Inhibition of NF-[Formula: see text]B and Mitochondria-Dependent Pathways In Vitro and Inhibited Human Melanoma Xenografts in a Mouse Model In Vivo. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:637-61. [PMID: 27109154 DOI: 10.1142/s0192415x1650035x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Casticin, a polymethoxyflavone occurring in natural plants, has been shown to have anticancer activities. In the present study, we aims to investigate the anti-skin cancer activity of casticin on melanoma cells in vitro and the antitumor effect of casticin on human melanoma xenografts in nu/nu mice in vivo. A flow cytometric assay was performed to detect expression of viable cells, cell cycles, reactive oxygen species production, levels of [Formula: see text] and caspase activity. A Western blotting assay and confocal laser microscope examination were performed to detect expression of protein levels. In the in vitro studies, we found that casticin induced morphological cell changes and DNA condensation and damage, decreased the total viable cells, and induced G2/M phase arrest. Casticin promoted reactive oxygen species (ROS) production, decreased the level of [Formula: see text], and promoted caspase-3 activities in A375.S2 cells. The induced G2/M phase arrest indicated by the Western blotting assay showed that casticin promoted the expression of p53, p21 and CHK-1 proteins and inhibited the protein levels of Cdc25c, CDK-1, Cyclin A and B. The casticin-induced apoptosis indicated that casticin promoted pro-apoptotic proteins but inhibited anti-apoptotic proteins. These findings also were confirmed by the fact that casticin promoted the release of AIF and Endo G from mitochondria to cytosol. An electrophoretic mobility shift assay (EMSA) assay showed that casticin inhibited the NF-[Formula: see text]B binding DNA and that these effects were time-dependent. In the in vivo studies, results from immuno-deficient nu/nu mice bearing the A375.S2 tumor xenograft indicated that casticin significantly suppressed tumor growth based on tumor size and weight decreases. Early G2/M arrest and mitochondria-dependent signaling contributed to the apoptotic A375.S2 cell demise induced by casticin. In in vivo experiments, A375.S2 also efficaciously suppressed tumor volume in a xenotransplantation model. Therefore, casticin might be a potential therapeutic agent for the treatment of skin cancer in the future.
Collapse
Affiliation(s)
- Yin-Wen Shiue
- * Department of Biological Science and Technology, China Medical University Taichung 404, Taiwan
| | - Chi-Cheng Lu
- † School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Ping Hsiao
- ‡ Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.,§ Department of Dermatology, Chung Shan Medical University Hospital Taichung 402, Taiwan
| | - Ching-Lung Liao
- ¶ Graduate Institute of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Jing-Pin Lin
- ∥ School of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Kuang-Chi Lai
- ** School of Medicine, China Medical University, Taichung 404, Taiwan.,†† Department of Surgery, China Medical University Beigang Hospital, Yunlin 651, Taiwan
| | - Chien-Chih Yu
- ‡‡ School of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Yi-Ping Huang
- §§ Department of Physiology, China Medical University, Taichung 404, Taiwan
| | - Heng-Chien Ho
- ** School of Medicine, China Medical University, Taichung 404, Taiwan
| | - Jing-Gung Chung
- * Department of Biological Science and Technology, China Medical University Taichung 404, Taiwan.,¶¶ Department of Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
9
|
Magalhães HI, Wilke DV, Bezerra DP, Cavalcanti BC, Rotta R, de Lima DP, Beatriz A, Moraes MO, Diniz-Filho J, Pessoa C. (4-Methoxyphenyl)(3,4,5-trimethoxyphenyl)methanone inhibits tubulin polymerization, induces G2/M arrest, and triggers apoptosis in human leukemia HL-60 cells. Toxicol Appl Pharmacol 2013; 272:117-26. [DOI: 10.1016/j.taap.2013.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 05/16/2013] [Accepted: 06/02/2013] [Indexed: 10/26/2022]
|
10
|
A kinase interacting protein (AKIP1) is a key regulator of cardiac stress. Proc Natl Acad Sci U S A 2013; 110:E387-96. [PMID: 23319652 DOI: 10.1073/pnas.1221670110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
cAMP-dependent protein kinase (PKA) regulates a myriad of functions in the heart, including cardiac contractility, myocardial metabolism,and gene expression. However, a molecular integrator of the PKA response in the heart is unknown. Here, we show that the PKA adaptor A-kinase interacting protein 1 (AKIP1) is up-regulated in cardiac myocytes in response to oxidant stress. Mice with cardiac gene transfer of AKIP1 have enhanced protection to ischemic stress. We hypothesized that this adaptation to stress was mitochondrial dependent. AKIP1 interacted with the mitochondrial localized apoptosis inducing factor (AIF) under both normal and oxidant stress. When cardiac myocytes or whole hearts are exposed to oxidant and ischemic stress, levels of both AKIP1 and AIF were enhanced. AKIP1 is preferentially localized to interfibrillary mitochondria and up-regulated in this cardiac mitochondrial subpopulation on ischemic injury. Mitochondria isolated from AKIP1 gene transferred hearts showed increased mitochondrial localization of AKIP1, decreased reactive oxygen species generation, enhanced calcium tolerance, decreased mitochondrial cytochrome C release,and enhance phosphorylation of mitochondrial PKA substrates on ischemic stress. These observations highlight AKIP1 as a critical molecular regulator and a therapeutic control point for stress adaptation in the heart.
Collapse
|
11
|
Liu J, Wang J, Zhou Y. Upregulation of BNIP3 and translocation to mitochondria in nutrition deprivation induced apoptosis in nucleus pulposus cells. Joint Bone Spine 2012; 79:186-91. [DOI: 10.1016/j.jbspin.2011.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 04/19/2011] [Indexed: 01/04/2023]
|
12
|
Comelli M, Domenis R, Bisetto E, Contin M, Marchini M, Ortolani F, Tomasetig L, Mavelli I. Cardiac differentiation promotes mitochondria development and ameliorates oxidative capacity in H9c2 cardiomyoblasts. Mitochondrion 2011; 11:315-26. [DOI: 10.1016/j.mito.2010.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 10/20/2010] [Accepted: 12/03/2010] [Indexed: 12/14/2022]
|
13
|
Ola MS, Nawaz M, Ahsan H. Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Mol Cell Biochem 2011; 351:41-58. [PMID: 21210296 DOI: 10.1007/s11010-010-0709-x] [Citation(s) in RCA: 679] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 12/13/2010] [Indexed: 12/12/2022]
Abstract
Apoptosis, or programmed cell death, plays a pivotal role in the elimination of unwanted, damaged, or infected cells in multicellular organisms and also in diverse biological processes, including development, cell differentiation, and proliferation. Apoptosis is a highly regulated form of cell death, and dysregulation of apoptosis results in pathological conditions including cancer, autoimmune and neurodegenerative diseases. The Bcl-2 family proteins are key regulators of apoptosis, which include both anti- and pro-apoptotic proteins, and a slight change in the dynamic balance of these proteins may result either in inhibition or promotion of cell death. Execution of apoptosis by various stimuli is initiated by activating either intrinsic or extrinsic pathways which lead to a series of downstream cascade of events, releasing of various apoptotic mediators from mitochondria and activation of caspases, important for the cell fate. In view of recent research advances about underlying mechanism of apoptosis, this review highlights the basics concept of apoptosis and its regulation by Bcl-2 family of protein. Furthermore, this review discusses the interplay of various apoptotic mediators and caspases to decide the fate of the cell. We expect that this review will add to the pool of basic information necessary to understand the mechanism of apoptosis which may implicate in designing better strategy to develop biomedical therapy to control apoptosis.
Collapse
Affiliation(s)
- Mohammad Shamsul Ola
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, KSA
| | | | | |
Collapse
|
14
|
Son YO, Kook SH, Jang YS, Shi X, Lee JC. Critical role of poly(ADP-ribose) polymerase-1 in modulating the mode of cell death caused by continuous oxidative stress. J Cell Biochem 2010; 108:989-97. [PMID: 19711368 DOI: 10.1002/jcb.22332] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Continuously generated hydrogen peroxide (H(2)O(2)) inhibits typical apoptosis and instead initiates a caspase-independent, apoptosis-inducing factor (AIF)-mediated pyknotic cell death. This may be related to H(2)O(2)-mediated DNA damage and subsequent ATP depletion, although the exact mechanisms by which the mode of cell death is decided after H(2)O(2) exposure are still unclear. Accumulated evidence and our previous data led us to hypothesize that continuously generated H(2)O(2), not an H(2)O(2) bolus, induces severe DNA damage, signaling poly(ADP-ribose) polymerase-1 (PARP-1) activation, ATP depletion, and eventually caspase-independent cell death. Results from the present study support that H(2)O(2) generated continuously by glucose oxidase causes excessive DNA damage and PARP-1 activation. Blockage of PARP-1 by a siRNA transfection or by pharmacological inhibitor resulted in the significant inhibition of ATP depletion, loss of mitochondrial membrane potential, nuclear translocation of AIF and endonuclease G, and eventually conversion to caspase-dependent apoptosis. Overall, the current study demonstrates the different roles of PARP-1 inhibition in modulation of cell death according to the method of H(2)O(2) exposure, that is, continuous generation versus a direct addition.
Collapse
Affiliation(s)
- Young-Ok Son
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky 40536-0001, USA
| | | | | | | | | |
Collapse
|
15
|
Apoptosis-inducing factor plays a critical role in caspase-independent, pyknotic cell death in hydrogen peroxide-exposed cells. Apoptosis 2009; 14:796-808. [PMID: 19418225 DOI: 10.1007/s10495-009-0353-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
It has been proposed that continuously generated hydrogen peroxide (H(2)O(2)) inhibits typical apoptosis and instead initiates an alternate, apoptosis-inducing factor (AIF)-dependent process. Aside from the role of AIF, however, the detailed morphological characterization of H(2)O(2)-induced cell death is not complete. This study examined the cellular mechanism(s) by which the continuous presence of H(2)O(2) induces cell death. We also further analyzed the precise role of AIF by inhibiting its expression with siRNA. Exposure of cells to H(2)O(2) generated by glucose oxidase caused mitochondrion-mediated, caspase-independent cell death. In addition, H(2)O(2) exposure resulted in cell shrinkage and chromatin condensation without nuclear fragmentation, indicating that H(2)O(2) stimulates a pyknotic cell death. Further analysis of AIF-transfected cells clearly demonstrated that nuclear translocation of AIF is the most important event required for nuclear condensation, phosphatidyl serine translocation, and ultimately cell death in H(2)O(2)-exposed cells. Furthermore, ATP was rapidly and severely depleted in cells exposed to H(2)O(2) generated by glucose oxidase but not by H(2)O(2) added as a bolus. Suppression of the H(2)O(2)-mediated ATP depletion by 3-aminobenzamide led to a significant increase of nuclear fragmentation in glucose oxidase-exposed cells. Collectively, these findings suggest that an acute energy reduction by H(2)O(2) causes caspase-independent and AIF-dependent cell death.
Collapse
|