1
|
Horváth T, Jász DK, Baráth B, Poles MZ, Boros M, Hartmann P. Mitochondrial Consequences of Organ Preservation Techniques during Liver Transplantation. Int J Mol Sci 2021; 22:2816. [PMID: 33802177 PMCID: PMC7998211 DOI: 10.3390/ijms22062816] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 02/08/2023] Open
Abstract
Allograft ischemia during liver transplantation (LT) adversely affects the function of mitochondria, resulting in impairment of oxidative phosphorylation and compromised post-transplant recovery of the affected organ. Several preservation methods have been developed to improve donor organ quality; however, their effects on mitochondrial functions have not yet been compared. This study aimed to summarize the available data on mitochondrial effects of graft preservation methods in preclinical models of LT. Furthermore, a network meta-analysis was conducted to determine if any of these treatments provide a superior benefit, suggesting that they might be used on humans. A systematic search was conducted using electronic databases (EMBASE, MEDLINE (via PubMed), the Cochrane Central Register of Controlled Trials (CENTRAL) and Web of Science) for controlled animal studies using preservation methods for LT. The ATP content of the graft was the primary outcome, as this is an indicator overall mitochondrial function. Secondary outcomes were the respiratory activity of mitochondrial complexes, cytochrome c and aspartate aminotransferase (ALT) release. Both a random-effects model and the SYRCLE risk of bias analysis for animal studies were used. After a comprehensive search of the databases, 25 studies were enrolled in the analysis. Treatments that had the most significant protective effect on ATP content included hypothermic and subnormothermic machine perfusion (HMP and SNMP) (MD = -1.0, 95% CI: (-2.3, 0.3) and MD = -1.1, 95% CI: (-3.2, 1.02)), while the effects of warm ischemia (WI) without cold storage (WI) and normothermic machine perfusion (NMP) were less pronounced (MD = -1.8, 95% CI: (-2.9, -0.7) and MD = -2.1 MD; CI: (-4.6; 0.4)). The subgroup of static cold storage (SCS) with shorter preservation time (< 12 h) yielded better results than SCS ≥ 12 h, NMP and WI, in terms of ATP preservation and the respiratory capacity of complexes. HMP and SNMP stand out in terms of mitochondrial protection when compared to other treatments for LT in animals. The shorter storage time at lower temperatures, together with the dynamic preservation, provided superior protection for the grafts in terms of mitochondrial function. Additional clinical studies on human patients including marginal donors and longer ischemia times are needed to confirm any superiority of preservation methods with respect to mitochondrial function.
Collapse
Affiliation(s)
| | | | | | | | | | - Petra Hartmann
- Institute of Surgical Research, University of Szeged, 6724 Szeged, Hungary; (T.H.); (D.K.J.); (B.B.); (M.Z.P.); (M.B.)
| |
Collapse
|
2
|
Costanzini A, Sgarbi G, Maresca A, Del Dotto V, Solaini G, Baracca A. Mitochondrial Mass Assessment in a Selected Cell Line under Different Metabolic Conditions. Cells 2019; 8:cells8111454. [PMID: 31752092 PMCID: PMC6912592 DOI: 10.3390/cells8111454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/27/2019] [Accepted: 11/14/2019] [Indexed: 01/14/2023] Open
Abstract
Changes of quantity and/or morphology of cell mitochondria are often associated with metabolic modulation, pathology, and apoptosis. Exogenous fluorescent probes used to investigate changes in mitochondrial content and dynamics are strongly dependent, for their internalization, on the mitochondrial membrane potential and composition, thus limiting the reliability of measurements. To overcome this limitation, genetically encoded recombinant fluorescent proteins, targeted to different cellular districts, were used as reporters. Here, we explored the potential use of mitochondrially targeted red fluorescent probe (mtRFP) to quantify, by flow cytometry, mitochondrial mass changes in cells exposed to different experimental conditions. We first demonstrated that the mtRFP fluorescence intensity is stable during cell culture and it is related with the citrate synthase activity, an established marker of the mitochondrial mass. Incidentally, the expression of mtRFP inside mitochondria did not alter the oxygen consumption rate under both state 3 and 4 respiration conditions. In addition, using this method, we showed for the first time that different inducers of mitochondrial mass change, such as hypoxia exposure or resveratrol treatment of cells, could be consistently detected. We suggest that transfection and selection of stable clones expressing mtRFP is a reliable method to monitor mitochondrial mass changes, particularly when pathophysiological or experimental conditions change ΔΨm, as it occurs during mitochondrial uncoupling or hypoxia/anoxia conditions.
Collapse
Affiliation(s)
- Anna Costanzini
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (A.C.); (G.S.)
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Gianluca Sgarbi
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (A.C.); (G.S.)
| | - Alessandra Maresca
- UOC Clinica Neurologica, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40126 Bologna, Italy;
| | - Valentina Del Dotto
- Unit of Neurology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy;
| | - Giancarlo Solaini
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (A.C.); (G.S.)
- Correspondence: (G.S.); (A.B.); Tel.: +39-051-2091215 (G.S.); Tel.: +39-051-2091244 (A.B.)
| | - Alessandra Baracca
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (A.C.); (G.S.)
- Correspondence: (G.S.); (A.B.); Tel.: +39-051-2091215 (G.S.); Tel.: +39-051-2091244 (A.B.)
| |
Collapse
|
3
|
Donor Small-Droplet Macrovesicular Steatosis Affects Liver Transplant Outcome in HCV-Negative Recipients. Can J Gastroenterol Hepatol 2019; 2019:5862985. [PMID: 31187028 PMCID: PMC6521523 DOI: 10.1155/2019/5862985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/03/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND No data are available on liver transplantation (LT) outcome and donor liver steatosis, classified as large droplet macrovesicular (Ld-MaS), small-droplet macrovesicular (Sd-MaS), and true microvesicular (MiS), taking into account the recipient Hepatitis C virus (HCV) status. AIM We investigate the impact of allograft steatosis reclassified according to the Brunt classification on early graft function and survival after LT. METHODS We retrospectively reviewed 204 consecutive preischemia biopsies of grafts transplanted in our center during the period 2001-2011 according to recipient HCV status. RESULTS The median follow-up after LT was 7.5 years (range: 0.0-16.7). In negative recipients (n=122), graft loss was independently associated with graft Sd-MaS, in multivariable Cox regression models comprehending only pre-/intraoperative variables (HR=1.03, 95%CI=1.01-1.05; P=0.003) and when including indexes of early postoperative graft function (HR=1.04, 95%CI=1.02-1.06; P=0.001). Graft Sd-MaS>15% showed a risk for graft loss > 2.5-folds in both the models. Graft Sd-MaS>15% was associated with reduced graft ATP content and, only in HCV- recipients, with higher early post-LT serum AST peaks. CONCLUSIONS In HCV-negative recipients, allografts with >15% Sd-MaS have significantly reduced graft survival and show low ATP and higher AST peaks in the immediate posttransplant period. Donors with >15% Sd-MaS have significantly higher BMI, longer ICU stays, and lower PaO2.
Collapse
|
4
|
Sgarbi G, Barbato S, Costanzini A, Solaini G, Baracca A. The role of the ATPase inhibitor factor 1 (IF 1) in cancer cells adaptation to hypoxia and anoxia. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2018; 1859:99-109. [PMID: 29097244 DOI: 10.1016/j.bbabio.2017.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/19/2017] [Accepted: 10/27/2017] [Indexed: 12/23/2022]
Abstract
The physiological role of the mitochondrial ATP synthase complex is to generate ATP through oxidative phosphorylation. Indeed, the enzyme can reverse its activity and hydrolyze ATP under ischemic conditions, as shown in isolated mitochondria and in mammalian heart and liver. However, what occurs when cancer cells experience hypoxia or anoxia has not been well explored. In the present study, we investigated the bioenergetics of cancer cells under hypoxic/anoxic conditions with particular emphasis on ATP synthase, and the conditions driving it to work in reverse. In this context, we further examined the role exerted by its endogenous inhibitor factor, IF1, that it is overexpressed in cancer cells. Metabolic and bioenergetic analysis of cancer cells exposed to severe hypoxia (down to 0.1% O2) unexpectedly showed that Δψm is preserved independently of the presence of IF1 and that ATP synthase still phosphorylates ADP though at a much lower rate than in normoxia. However, when we induced an anoxia-mimicking condition by collapsing ΔμΗ+ with the FCCP uncoupler, the IF1-silenced clones only reversed the ATP synthase activity hydrolyzing ATP in order to reconstitute the electrochemical proton gradient. Notably, in cancer cells IF1 overexpression fully prevents ATP synthase hydrolytic activity activation under uncoupling conditions. Therefore, our results suggest that IF1 overexpression promotes cancer cells survival under temporary anoxic conditions by preserving cellular ATP despite mitochondria dysfunction.
Collapse
Affiliation(s)
- G Sgarbi
- Department of Biomedical and Neuromotor Sciences, Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, via Irnerio, 48, 40126 Bologna, Italy
| | - S Barbato
- Department of Biomedical and Neuromotor Sciences, Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, via Irnerio, 48, 40126 Bologna, Italy
| | - A Costanzini
- Department of Biomedical and Neuromotor Sciences, Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, via Irnerio, 48, 40126 Bologna, Italy
| | - G Solaini
- Department of Biomedical and Neuromotor Sciences, Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, via Irnerio, 48, 40126 Bologna, Italy.
| | - A Baracca
- Department of Biomedical and Neuromotor Sciences, Laboratory of Biochemistry and Mitochondrial Pathophysiology, University of Bologna, via Irnerio, 48, 40126 Bologna, Italy.
| |
Collapse
|
5
|
Effects of Hyperoxia During Resuscitation From Hemorrhagic Shock in Swine With Preexisting Coronary Artery Disease. Crit Care Med 2017; 45:e1270-e1279. [PMID: 29028763 DOI: 10.1097/ccm.0000000000002767] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Investigation of the effects of hyperoxia during resuscitation from hemorrhagic shock in swine with preexisting coronary artery disease. DESIGN Prospective, controlled, randomized trial. SETTING University animal research laboratory. SUBJECTS Nineteen hypercholesterolemic pigs with preexisting coronary artery disease. INTERVENTIONS Anesthetized, mechanically ventilated, and surgically instrumented pigs underwent 3 hours of hemorrhagic shock (removal of 30% of the calculated blood volume and subsequent titration of mean arterial blood pressure ≈40 mm Hg). Postshock resuscitation (48 hr) comprised retransfusion of shed blood, crystalloids (balanced electrolyte solution), and norepinephrine support. Pigs were randomly assigned to "control" (FIO2 0.3, adjusted for arterial oxygen saturation ≥ 90%) and "hyperoxia" (FIO2 1.0 for 24 hr) groups. MEASUREMENTS AND MAIN RESULTS Before, at the end of shock and every 12 hours of resuscitation, datasets comprising hemodynamics, calorimetry, blood gases, cytokines, and cardiac and renal function were recorded. Postmortem, organs were sampled for immunohistochemistry, western blotting, and mitochondrial high-resolution respirometry. Survival rates were 50% and 89% in the control and hyperoxia groups, respectively (p = 0.077). Apart from higher relaxation constant τ at 24 hours, hyperoxia did not affect cardiac function. However, troponin values were lower (2.2 [0.9-6.2] vs 6.9 [4.8-9.8] ng/mL; p < 0.05) at the end of the experiment. Furthermore, hyperoxia decreased cardiac 3-nitrotyrosine formation and increased inducible nitric oxide synthase expression. Plasma creatinine values were lower in the hyperoxia group during resuscitation coinciding with significantly improved renal mitochondrial respiratory capacity and lower 3-nitrotyrosine formation. CONCLUSIONS Hyperoxia during resuscitation from hemorrhagic shock in swine with preexisting coronary artery disease reduced renal dysfunction and cardiac injury, potentially resulting in improved survival, most likely due to increased mitochondrial respiratory capacity and decreased oxidative and nitrosative stress. Compared with our previous study, the present results suggest a higher benefit of hyperoxia in comorbid swine due to an increased susceptibility to hemorrhagic shock.
Collapse
|
6
|
Sgarbi G, Gorini G, Costanzini A, Barbato S, Solaini G, Baracca A. Hypoxia decreases ROS level in human fibroblasts. Int J Biochem Cell Biol 2017; 88:133-144. [DOI: 10.1016/j.biocel.2017.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/24/2017] [Accepted: 05/04/2017] [Indexed: 12/31/2022]
|
7
|
Abstract
In recent years, hyperbaric oxygen (HBO) has been used in the treatment of a lot of diseases such as decompression sickness, arterial gas embolism, carbon dioxide poisoning, soft tissue infection, refractory osteomyelitis, and problematic wound, but little is known about its application in liver transplantation. Although several studies have been conducted to investigate the protective effects of HBO on liver transplantation and liver preservation, there are still some controversies on this issue, especially its immunomodulatory effect. In this short review, we briefly summarize the findings supporting the application of HBO during liver transplantation (including donors and recipients).
Collapse
Affiliation(s)
- Hu Lv
- Department of Anaesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Cui-Hong Han
- Department of Pathology, the First Hospital of Jining City, Jining, Shandong Province, China
| | - Xue-Jun Sun
- Department of Diving and Hyperbaric Medicine, Secondary Military Medical University, Shanghai, China
| | - Wen-Wu Liu
- Department of Diving and Hyperbaric Medicine, Secondary Military Medical University, Shanghai, China
| |
Collapse
|
8
|
Barbato S, Sgarbi G, Gorini G, Baracca A, Solaini G. The inhibitor protein (IF1) of the F1F0-ATPase modulates human osteosarcoma cell bioenergetics. J Biol Chem 2015; 290:6338-48. [PMID: 25605724 PMCID: PMC4358270 DOI: 10.1074/jbc.m114.631788] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/20/2015] [Indexed: 01/20/2023] Open
Abstract
The bioenergetics of IF1 transiently silenced cancer cells has been extensively investigated, but the role of IF1 (the natural inhibitor protein of F1F0-ATPase) in cancer cell metabolism is still uncertain. To shed light on this issue, we established a method to prepare stably IF1-silenced human osteosarcoma clones and explored the bioenergetics of IF1 null cancer cells. We showed that IF1-silenced cells proliferate normally, consume glucose, and release lactate as controls do, and contain a normal steady-state ATP level. However, IF1-silenced cells displayed an enhanced steady-state mitochondrial membrane potential and consistently showed a reduced ADP-stimulated respiration rate. In the parental cells (i.e. control cells containing IF1) the inhibitor protein was found to be associated with the dimeric form of the ATP synthase complex, therefore we propose that the interaction of IF1 with the complex either directly, by increasing the catalytic activity of the enzyme, or indirectly, by improving the structure of mitochondrial cristae, can increase the oxidative phosphorylation rate in osteosarcoma cells grown under normoxic conditions.
Collapse
Affiliation(s)
- Simona Barbato
- From the Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Gianluca Sgarbi
- From the Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Giulia Gorini
- From the Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Alessandra Baracca
- From the Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Giancarlo Solaini
- From the Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
9
|
Giannone FA, Treré D, Domenicali M, Grattagliano I, Baracca A, Sgarbi G, Maggioli C, Longobardi P, Solaini G, Derenzini M, Bernardi M, Caraceni P. An innovative hyperbaric hypothermic machine perfusion protects the liver from experimental preservation injury. ScientificWorldJournal 2012; 2012:573410. [PMID: 22593698 PMCID: PMC3345935 DOI: 10.1100/2012/573410] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/18/2011] [Indexed: 02/07/2023] Open
Abstract
Purpose. Hypothermic machine perfusion systems seem more effective than the current static storage to prevent cold ischemic liver injury. Thus, we test an innovative hyperbaric hypothermic machine perfusion (HHMP), which combines hyperbaric oxygenation of the preservation solution and continuous perfusion of the graft. Methods. Rat livers were preserved with Celsior solution according to 4 different modalities: normobaric static preservation; hyperbaric static preservation at 2 atmosphere absolute (ATA); normobaric dynamic preservation, with continuous perfusion; hyperbaric dynamic preservation, with continuous perfusion at 2 ATA. After 24 h cold preservation, we assessed different parameters. Results. Compared to baseline, livers preserved with the current static storage showed severe ultrastructural damage, glycogen depletion and an increased oxidative stress. Normobaric perfused livers showed improved hepatocyte ultrastructure and ameliorated glycogen stores, but they still suffered a significant oxidative damage. The addition of hyperbaric oxygen produces an extra benefit by improving oxidative injury and by inducing endothelial NO synthase (eNOS) gene expression. Conclusions. Preservation by means of the present innovative HHMP reduced the liver injury occurring after the current static cold storage by lowering glycogen depletion and oxidative damage. Interestingly, only the use of hyperbaric oxygen was associated to a blunted oxidative stress and an increased eNOS gene expression.
Collapse
Affiliation(s)
- Ferdinando A Giannone
- Department of Clinical Medicine, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|