1
|
Capturing Dioclea Reflexa Seed Bioactives on Halloysite Nanotubes and pH Dependent Release of Cargo against Breast (MCF-7) Cancers In Vitro. SEPARATIONS 2021. [DOI: 10.3390/separations8030026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this work, optimization parameters were developed to capture plant metabolites from Dioclea Reflexa (DR) seed ex-tracts onto halloysites nanotubes (HNTs). A one-step pool of the crude extracts at neutral pH from the HNT lumen failed to elicit a reduction in breast cancer, Michigan Cancer Foundation-7 (MCF-7) cell viability. However, the pH-dependent elution of metabolites revealed that the acidic pH samples exhibited profound antiproliferative effects on the cancer cells compared to the basic pH metabolites using both trypan blue dye exclusion assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) viability test. pH~5.2 samples demonstrated by half-maximal inhibitory concentration (IC50) of 0.8 mg and a cyclic voltammetry oxidation peak potential and current of 234 mV and 0.45 µA, respectively. This indicates that the cancer cells death could be attributed to membrane polarization/depolarization effects of the sample. Fluorescence-activated cell sorting (FACS) studies confirmed that the plant metabolites affected breast cancer apoptotic signaling pathways of cell death. The studies proved that plant metabolites could be captured using simplified screening procedures for rapid drug discovery purposes. Such procedures, however, would require the integration of affordable analytical tools to test and isolate individual metabolites. Our approach could be an important strategy to create a library and database of bioactive plant metabolites based on pH values.
Collapse
|
2
|
Zhao Y, Hao C, Zhai R, Bao L, Wang D, Li Y, Yu X, Huang R, Yao W. Effects of cyclophosphamide on the phenotypes and functions of THP-1 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 70:103201. [PMID: 31202006 DOI: 10.1016/j.etap.2019.103201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/18/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Early and accurate evaluation of immunotoxicity is crucial. However, there are few in vitro models for immunosuppressive evaluation. THP-1 cells has long been used for in vitro sensitivity evaluation. Whether it can be used for immunosuppressive evaluation remains unclear. In this study, effects of immunosuppressant cyclophosphamide (CY) on THP-1 cells were observed while 2, 4-Dinitrochlorobenzene (DNCB) was used as a control. The phenotypes of THP-1 cells, the ability to activate naïve T cells, intracellular reactive oxygen species (ROS) level, gene markers, phagocytic ability and cell apoptosis were detected after THP-1 cells being exposed to different concentrations of CY and DNCB. Both CY and DNCB were able to activate THP-1 cells, but there were a lot of differences in their effects on THP-1 cells, such as the changes in phenotypes, in the ability to activate naïve T cells, in ROS production and in marker gene expression. Firstly, CY down-regulated the expression of CD86 on THP-1 cells while DNCB up-regulated its expression. Secondly, the ability of THP-1 cells to activate naïve T cells was enhanced by CY and suppressed by DNCB. Thirdly, CY raised rapid and transient elevation of ROS level in THP-1 cells, while the effects of DNCB were slower and longer-lasting. Finally, only CY could lead to an increase in heme oxygenase 1 (HMOX1) expression. Taken all these results into account, we suggested that THP-1 cell line possesses the potency to be an in vitro model of immunosuppressive evaluation. And the surface molecule CD86, the ability to activate naïve T cells, the ROS production and the gene marker HMOX1 of THP-1 cells are promising markers.
Collapse
Affiliation(s)
- Youliang Zhao
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, Henan Province, PR China
| | - Changfu Hao
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, Henan Province, PR China
| | - Ruonan Zhai
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, Henan Province, PR China
| | - Lei Bao
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, Henan Province, PR China
| | - Di Wang
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, Henan Province, PR China
| | - Yiping Li
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, Henan Province, PR China
| | - Xinghao Yu
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, Henan Province, PR China
| | - Ruoxuan Huang
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, Henan Province, PR China
| | - Wu Yao
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, Henan Province, PR China.
| |
Collapse
|
3
|
Yadav S, Pandey SK, Kumar A, Kujur PK, Singh RP, Singh SM. Antitumor and chemosensitizing action of 3-bromopyruvate: Implication of deregulated metabolism. Chem Biol Interact 2017; 270:73-89. [DOI: 10.1016/j.cbi.2017.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/04/2017] [Accepted: 04/18/2017] [Indexed: 01/22/2023]
|
4
|
The anticancer agent 3-bromopyruvate: a simple but powerful molecule taken from the lab to the bedside. J Bioenerg Biomembr 2016; 48:349-62. [PMID: 27457582 DOI: 10.1007/s10863-016-9670-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/18/2016] [Indexed: 12/13/2022]
Abstract
At the beginning of the twenty-first century, 3-bromopyruvate (3BP), a simple alkylating chemical compound was presented to the scientific community as a potent anticancer agent, able to cause rapid toxicity to cancer cells without bystander effects on normal tissues. The altered metabolism of cancers, an essential hallmark for their progression, also became their Achilles heel by facilitating 3BP's selective entry and specific targeting. Treatment with 3BP has been administered in several cancer type models both in vitro and in vivo, either alone or in combination with other anticancer therapeutic approaches. These studies clearly demonstrate 3BP's broad action against multiple cancer types. Clinical trials using 3BP are needed to further support its anticancer efficacy against multiple cancer types thus making it available to more than 30 million patients living with cancer worldwide. This review discusses current knowledge about 3BP related to cancer and discusses also the possibility of its use in future clinical applications as it relates to safety and treatment issues.
Collapse
|
5
|
Laborde C, Pittino F, Verhoeven HA, Lemay SG, Selmi L, Jongsma MA, Widdershoven FP. Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays. NATURE NANOTECHNOLOGY 2015; 10:791-5. [PMID: 26237346 DOI: 10.1038/nnano.2015.163] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 06/25/2015] [Indexed: 05/03/2023]
Abstract
Platforms that offer massively parallel, label-free biosensing can, in principle, be created by combining all-electrical detection with low-cost integrated circuits. Examples include field-effect transistor arrays, which are used for mapping neuronal signals and sequencing DNA. Despite these successes, however, bioelectronics has so far failed to deliver a broadly applicable biosensing platform. This is due, in part, to the fact that d.c. or low-frequency signals cannot be used to probe beyond the electrical double layer formed by screening salt ions, which means that under physiological conditions the sensing of a target analyte located even a short distance from the sensor (∼1 nm) is severely hampered. Here, we show that high-frequency impedance spectroscopy can be used to detect and image microparticles and living cells under physiological salt conditions. Our assay employs a large-scale, high-density array of nanoelectrodes integrated with CMOS electronics on a single chip and the sensor response depends on the electrical properties of the analyte, allowing impedance-based fingerprinting. With our platform, we image the dynamic attachment and micromotion of BEAS, THP1 and MCF7 cancer cell lines in real time at submicrometre resolution in growth medium, demonstrating the potential of the platform for label/tracer-free high-throughput screening of anti-tumour drug candidates.
Collapse
Affiliation(s)
- C Laborde
- MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, Enschede 7500 AE, Netherlands
| | - F Pittino
- DIEGM, University of Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - H A Verhoeven
- PRI-Bioscience, Wageningen University and Research Centre, PO Box 16, Wageningen 6700 AA, Netherlands
| | - S G Lemay
- MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, Enschede 7500 AE, Netherlands
| | - L Selmi
- DIEGM, University of Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - M A Jongsma
- PRI-Bioscience, Wageningen University and Research Centre, PO Box 16, Wageningen 6700 AA, Netherlands
| | - F P Widdershoven
- NXP Semiconductors, Technology &Operations/CTO office, High Tech Campus 46, Eindhoven 5656 AE, Netherlands
| |
Collapse
|
6
|
3-Bromopyruvate (3BP) a fast acting, promising, powerful, specific, and effective "small molecule" anti-cancer agent taken from labside to bedside: introduction to a special issue. J Bioenerg Biomembr 2012; 44:1-6. [PMID: 22382780 DOI: 10.1007/s10863-012-9425-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although the "Warburg effect", i.e., elevated glucose metabolism to lactic acid (glycolysis) even in the presence of oxygen, has been recognized as the most common biochemical phenotype of cancer for over 80 years, its biochemical and genetic basis remained unknown for over 50 years. Work focused on elucidating the underlying mechanism(s) of the "Warburg effect" commenced in the author's laboratory in 1969. By 1985 among the novel findings made two related most directly to the basis of the "Warburg effect", the first that the mitochondrial content of tumors exhibiting this phenotype is markedly decreased relative to the tissue of origin, and the second that such mitochondria have markedly elevated amounts of the enzyme hexokinase-2 (HK2) bound to their outer membrane. HK2 is the first of a number of enzymes in cancer cells involved in metabolizing the sugar glucose to lactic acid. At its mitochondrial location HK2 binds at/near the protein VDAC (voltage dependent anion channel), escapes inhibition by its product glucose-6-phosphate, and gains access to mitochondrial produced ATP. As shown by others, it also helps immortalize cancer cells, i.e., prevents cell death. Based on these studies, the author's laboratory commenced experiments to elucidate the gene basis for the overexpression of HK2 in cancer. These studies led to both the discovery of a unique HK2 promoter region markedly activated by both hypoxic conditions and moderately activated by several metabolites (e.g., glucose), Also discovered was the promoter's regulation by epigenetic events (i.e., methylation, demethylation). Finally, the author's laboratory turned to the most important objective. Could they selectively and completely destroy cancerous tumors in animals? This led to the discovery in an experiment conceived, designed, and conducted by Young Ko that the small molecule 3-bromopyruvate (3BP), the subject of this mini-review series, is an incredibly powerful and swift acting anticancer agent. Significantly, in subsequent experiments with rodents (19 animals with advanced cancer) Ko led a project in which 3BP was shown in a short treatment period to eradicate all (100%). Ko's and co-author's findings once published attracted global attention leading world-wide to many other studies and publications related to 3BP and its potent anti-cancer effect. This Issue of the Journal of Bioenergetics and Biomembranes (JOBB 44-1) captures only a sampling of research conducted to date on 3BP as an anticancer agent, and includes also a Case Report on the first human patient known to the author to be treated with specially formulated 3BP. Suffice it to say in this bottom line, "3BP, a small molecule, results in a remarkable therapeutic effect when it comes to treating cancers exhibiting a "Warburg effect". This includes most cancer types.
Collapse
|