1
|
Ademuwagun IA, Rotimi SO, Syrbe S, Ajamma YU, Adebiyi E. Voltage Gated Sodium Channel Genes in Epilepsy: Mutations, Functional Studies, and Treatment Dimensions. Front Neurol 2021; 12:600050. [PMID: 33841294 PMCID: PMC8024648 DOI: 10.3389/fneur.2021.600050] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Genetic epilepsy occurs as a result of mutations in either a single gene or an interplay of different genes. These mutations have been detected in ion channel and non-ion channel genes. A noteworthy class of ion channel genes are the voltage gated sodium channels (VGSCs) that play key roles in the depolarization phase of action potentials in neurons. Of huge significance are SCN1A, SCN1B, SCN2A, SCN3A, and SCN8A genes that are highly expressed in the brain. Genomic studies have revealed inherited and de novo mutations in sodium channels that are linked to different forms of epilepsies. Due to the high frequency of sodium channel mutations in epilepsy, this review discusses the pathogenic mutations in the sodium channel genes that lead to epilepsy. In addition, it explores the functional studies on some known mutations and the clinical significance of VGSC mutations in the medical management of epilepsy. The understanding of these channel mutations may serve as a strong guide in making effective treatment decisions in patient management.
Collapse
Affiliation(s)
- Ibitayo Abigail Ademuwagun
- Covenant University Bioinformatics Research, Covenant University, Ota, Nigeria
- Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Solomon Oladapo Rotimi
- Covenant University Bioinformatics Research, Covenant University, Ota, Nigeria
- Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Steffen Syrbe
- Clinic for Pediatric and Adolescent Medicine, Heidelberg University, Heidelberg, Germany
| | | | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research, Covenant University, Ota, Nigeria
- Department of Computer and Information Sciences, Covenant University, Ota, Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
2
|
Exercise-Induced Cognitive Improvement Is Associated with Sodium Channel-Mediated Excitability in APP/PS1 Mice. Neural Plast 2020; 2020:9132720. [PMID: 32256560 PMCID: PMC7103997 DOI: 10.1155/2020/9132720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022] Open
Abstract
Elevated brain activation, or hyperexcitability, induces cognitive impairment and confers an increased risk of Alzheimer's disease (AD). Blocking the overexcitation of the neural network may be a promising new strategy to prevent, halt, and even reverse this condition. Physical exercise has been shown to be an effective cognitive enhancer that reduces the risk of AD in elderly individuals, but the underlying mechanisms are far from being fully understood. We explored whether long-term treadmill exercise attenuates amyloid precursor protein (APP)/presenilin-1 (PS1) mutation-induced aberrant network activity and thus improves cognition by altering the numbers and/or distribution of voltage-gated sodium channels (Nav) in transgenic mice. APP/PS1 mice aged 2, 3.5, 5, 6.5, 8, and 9 months underwent treadmill exercise with different durations or at different stages of AD. The alterations in memory, electroencephalogram (EEG) recordings, and expression levels and distributions of Nav functional members (Nav1.1α, Nav1.2, Nav1.6, and Navβ2) were evaluated. The results revealed that treadmill exercise with 12- and 24-week durations 1) induced significant improvement in novel object recognition (NOR) memory and Morris water maze (MWM) spatial memory; 2) partially reduced abnormal spike activity; and 3) redressed the disturbed cellular distribution of Nav1.1α, aberrant Navβ2 cleavage augmentation, and Nav1.6 upregulation. Additionally, APP/PS1 mice in the 24-week exercise group showed better performance in the NOR task and a large decrease in Nav1.6 expression, which was close to the wild-type level. This study suggests that exercise improves cognition and neural activity by altering the numbers and distribution of hippocampal Nav in APP/PS1 mice. Long-term treadmill exercise, for about 24 weeks, starting in the preclinical stage, is a promising therapeutic strategy for preventing AD and halting its progress.
Collapse
|
3
|
Wang L, Han Z, Dai J, Cao K. Brugada Syndrome Caused by Sodium Channel Dysfunction Associated with a SCN1B Variant A197V. Arch Med Res 2020; 51:245-253. [PMID: 32192759 DOI: 10.1016/j.arcmed.2020.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/18/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE We aimed to identify and characterize a SCN1B variant, A197V, associated with Brugada Syndrome (BrS). METHODS Whole-exome sequencing was employed to explore the potential causative genes in 8 unrelated clinically diagnosed BrS patients. A197V variant was only detected in exon 4 of SCN1B in a 46 year old patient, who was admitted due to syncope. Wild type (WT) and mutant (A197V) genes were co-expressed with SCN5A in human embryonic kidney cells (HEK293 cells) and studied using whole-cell patch clamp and immunodetection techniques. RESULTS Coexpression of 5A/WT + 1B/A197V resulted in a marked decrease in current density compared to 5A/WT + 1B/WT. The activation velocity was decelerated by A197V mutation. No significant changes were observed in recovery from inactivation parameters. Cell surface protein analyses confirmed that Nav1.5 channel membrane distribution was affected by A197V mutation. CONCLUSIONS The current study is the first to report the functional analysis of SCN1B/ A197V, serving as a substrate responsible for BrS.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Cardiology, Nanjing Brain Hospital, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhonglin Han
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Jian Dai
- Department of Cardiology, Nanjing Brain Hospital, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Kejiang Cao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Zhang L, Qi X, Zhang G, Zhang Y, Tian J. Saxagliptin protects against hypoxia-induced damage in H9c2 cells. Chem Biol Interact 2019; 315:108864. [PMID: 31629700 DOI: 10.1016/j.cbi.2019.108864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/02/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022]
Abstract
Type II diabetes is recognized as a major risk factor for death due to cardiovascular complications such as coronary heart disease (CHD), but the complex interplay between these two diseases remains poorly understood. Suppression of oxidative stress, apoptosis, and inflammation of endothelial cells is a valuable treatment strategy to prevent or halt the progression of CHD. In the present study, we used real-time polymerase chain reaction (PCR), Western blot analysis, and enzyme linked immunosorbent assay (ELISA) to investigate the effects of saxagliptin on hypoxia-inducible factors. Our findings demonstrate that saxagliptin can significantly improve cell viability in H9c2 cells as well as reduce hypoxia-induced oxidative damage and loss of mitochondrial membrane potential. Saxagliptin reduced hypoxia-induced NADPH oxidase 4 (NOX 4). We also show that saxagliptin can reduce the expression of matrix metallopeptidase-2 (MMP-2) and matrix metallopeptidase-9 (MMP-9), two important degradative enzymes. Saxagliptin also suppressed hypoxia-induced expression of high mobility group box-1 protein (HMGB1), a key inflammatory cytokine. Finally, we show that saxagliptin can exert atheroprotective effects by reducing the expression of myeloid differential protein-88 (MyD88) and increasing the expression of nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Thus, saxagliptin shows promise as a treatment against diabetes-associated CHD.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Cardiology, The People's Hospital of Longhua, Shenzhen, 518109, China.
| | - Xiaogui Qi
- Department of Cardiology, The People's Hospital of Longhua, Shenzhen, 518109, China
| | - Guowei Zhang
- Department of Cardiac Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Yingying Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jiali Tian
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
5
|
Baroni D, Picco C, Moran O. A mutation of SCN1B associated with GEFS+ causes functional and maturation defects of the voltage-dependent sodium channel. Hum Mutat 2018; 39:1402-1415. [PMID: 29992740 DOI: 10.1002/humu.23589] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/25/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022]
Abstract
Voltage-dependent sodium channels are responsible of the rising phase of the action potential in excitable cells. These integral membrane proteins are composed of a pore-forming α-subunit, and one or more auxiliary β subunits. Mutation p.Asp25Asn (D25N; c.73G > A) of the β1 subunit, coded by the gene SCN1B, has been reported in a patient with generalized epilepsy with febrile seizure plus type 1 (GEFS+). In human embryonic kidney 293 (HEK) cells, the heterologous coexpression of D25N-β1 subunit with Nav1.2, Nav1.4, and Nav1.5 α subunits, representative of brain, skeletal muscle, and heart voltage gated sodium channels, determines a reduced sodium channel functional expression and a negative shift of the activation and inactivation steady state curves. The D25N mutation of the β1 subunit causes a maturation (glycosylation) defect of the protein, leading to a reduced targeting to the plasma membrane. Also the β1-dependent gating properties of the sodium channels are abolished by the mutation, suggesting that D25N is no more able to interact with the α subunit. Our work underscores the role played by the β1 subunit, highlighting how a defective interaction between the sodium channel constituents could lead to a disabling pathological condition, and opens the possibility to design a mutation-specific GEFS+ treatment based on protein maturation.
Collapse
|
6
|
Mutation E87Q of the β1-subunit impairs the maturation of the cardiac voltage-dependent sodium channel. Sci Rep 2017; 7:10683. [PMID: 28878239 PMCID: PMC5587543 DOI: 10.1038/s41598-017-10645-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/11/2017] [Indexed: 12/19/2022] Open
Abstract
Voltage-dependent sodium channels are responsible of the rising phase of the action potential in excitable cells. These membrane integral proteins are composed by a pore-forming α-subunit, and one or more auxiliary β subunits. Mutation E87Q of the β1 subunit is correlated with Brugada syndrome, a genetic disease characterised by ventricular fibrillation, right precordial ST segment elevation on ECG and sudden cardiac death. Heterologous expression of E87Q-β1 subunit in CHO cells determines a reduced sodium channel functional expression. The effect the E87Q mutation of the β1 subunit on sodium currents and α protein expression is correlated with a reduced availability of the mature form of the α subunit in the plasma membrane. This finding offers a new target for the treatment of the Brugada syndrome, based on protein maturation management. This work highlights the role played by the β1 subunit in the maturation and expression of the entire sodium channel complex and underlines how the defective interaction between the sodium channel constituents could lead to a disabling pathological condition.
Collapse
|
7
|
β1-C121W Is Down But Not Out: Epilepsy-Associated Scn1b-C121W Results in a Deleterious Gain-of-Function. J Neurosci 2017; 36:6213-24. [PMID: 27277800 DOI: 10.1523/jneurosci.0405-16.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/03/2016] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED Voltage-gated sodium channel (VGSC) β subunits signal through multiple pathways on multiple time scales. In addition to modulating sodium and potassium currents, β subunits play nonconducting roles as cell adhesion molecules, which allow them to function in cell-cell communication, neuronal migration, neurite outgrowth, neuronal pathfinding, and axonal fasciculation. Mutations in SCN1B, encoding VGSC β1 and β1B, are associated with epilepsy. Autosomal-dominant SCN1B-C121W, the first epilepsy-associated VGSC mutation identified, results in genetic epilepsy with febrile seizures plus (GEFS+). This mutation has been shown to disrupt both the sodium-current-modulatory and cell-adhesive functions of β1 subunits expressed in heterologous systems. The goal of this study was to compare mice heterozygous for Scn1b-C121W (Scn1b(+/W)) with mice heterozygous for the Scn1b-null allele (Scn1b(+/-)) to determine whether the C121W mutation results in loss-of-function in vivo We found that Scn1b(+/W) mice were more susceptible than Scn1b(+/-) and Scn1b(+/+) mice to hyperthermia-induced convulsions, a model of pediatric febrile seizures. β1-C121W subunits are expressed at the neuronal cell surface in vivo However, despite this, β1-C121W polypeptides are incompletely glycosylated and do not associate with VGSC α subunits in the brain. β1-C121W subcellular localization is restricted to neuronal cell bodies and is not detected at axon initial segments in the cortex or cerebellum or at optic nerve nodes of Ranvier of Scn1b(W/W) mice. These data, together with our previous results showing that β1-C121W cannot participate in trans-homophilic cell adhesion, lead to the hypothesis that SCN1B-C121W confers a deleterious gain-of-function in human GEFS+ patients. SIGNIFICANCE STATEMENT The mechanisms underlying genetic epilepsy syndromes are poorly understood. Closing this gap in knowledge is essential to the development of new medicines to treat epilepsy. We have used mouse models to understand the mechanism of a mutation in the sodium channel gene SCN1B linked to genetic epilepsy with febrile seizures plus. We report that sodium channel β1 subunit proteins encoded by this mutant gene are expressed at the surface of neuronal cell bodies; however, they do not associate with the ion channel complex nor are they transported to areas of the axon that are critical for proper neuronal firing. We conclude that this disease-causing mutation is not simply a loss-of-function, but instead results in a deleterious gain-of-function in the brain.
Collapse
|
8
|
|
9
|
Wang X, Zhang XG, Zhou TT, Li N, Jang CY, Xiao ZC, Ma QH, Li S. Elevated Neuronal Excitability Due to Modulation of the Voltage-Gated Sodium Channel Nav1.6 by Aβ1-42. Front Neurosci 2016; 10:94. [PMID: 27013956 PMCID: PMC4783403 DOI: 10.3389/fnins.2016.00094] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/24/2016] [Indexed: 12/13/2022] Open
Abstract
Aberrant increases in neuronal network excitability may contribute to the cognitive deficits in Alzheimer's disease (AD). However, the mechanisms underlying hyperexcitability are not fully understood. Such overexcitation of neuronal networks has been detected in the brains of APP/PS1 mice. In the present study, using current-clamp recording techniques, we observed that 12 days in vitro (DIV) primary cultured pyramidal neurons from P0 APP/PS1 mice exhibited a more prominent action potential burst and a lower threshold than WT littermates. Moreover, after treatment with Aβ1−42 peptide, 12 DIV primary cultured neurons showed similar changes, to a greater degree than in controls. Voltage-clamp recordings revealed that the voltage-dependent sodium current density of neurons incubated with Aβ1−42 was significantly increased, without change in the voltage-dependent sodium channel kinetic characteristics. Immunohistochemistry and western blot results showed that, after treatment with Aβ1−42, expressions of Nav and Nav1.6 subtype increased in cultured neurons or APP/PS1 brains compared to control groups. The intrinsic neuronal hyperexcitability of APP/PS1 mice might thus be due to an increased expression of voltage-dependent sodium channels induced by Aβ1−42. These results may illuminate the mechanism of aberrant neuronal networks in AD.
Collapse
Affiliation(s)
- Xi Wang
- Department of Physiology, Dalian Medical University Dalian, China
| | - Xiao-Gang Zhang
- Department of Physiology, Dalian Medical University Dalian, China
| | - Ting-Ting Zhou
- Department of Neurology, the First Affiliated Hospital of Dalian Medical University Dalian, China
| | - Na Li
- Department of Physiology, Dalian Medical University Dalian, China
| | - Chun-Yan Jang
- Department of Physiology, Dalian Medical University Dalian, China
| | - Zhi-Cheng Xiao
- The Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical College, Institute of Molecular and Clinical Medicine Kunming, China
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Second Affiliated Hospital, Soochow University Suzhou, China
| | - Shao Li
- Department of Physiology, Dalian Medical University Dalian, China
| |
Collapse
|
10
|
Baroni D, Moran O. Differential gene expression profiles of two excitable rat cell lines after over-expression of WT- and C121W-β1 sodium channel subunits. Neuroscience 2015; 297:105-17. [PMID: 25827112 DOI: 10.1016/j.neuroscience.2015.03.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/11/2015] [Accepted: 03/22/2015] [Indexed: 12/19/2022]
Abstract
Voltage-dependent sodium channels are membrane proteins essential for cell excitability. They are composed by a pore-forming α-subunit, encoded in mammals by up to nine different genes, and four different ancillary β-subunits. The expression pattern of the α subunit isoforms confers the distinctive functional and pharmacological properties to different excitable tissues. β-Subunits are important modulators of channel function and expression. Mutation C121W of the β1-subunit causes an autosomal dominant epileptic syndrome without cardiac symptoms. In neuroectoderm GH3 and cardiac H9C2 cells, the over-expression of β1 subunit augments α subunit mRNA and protein levels as well as sodium current density. Interestingly, the introduction of the epileptogenic C121W-β1 subunit produces additional changes in the α-subunit expression pattern of H9C2 cells, leaving unaltered the sodium channel isoform composition of GH3 cells. The challenge of the present work was to identify those genes that were differentially expressed in response to WT- or C121W-β1 subunit over-expression in the two rat cell lines under analysis. Hence, we analyzed the total mRNA extracted from control-untransfected and from WT- and C121W-β1-transfected GH3 and H9C2 cells by DNA-microarray. We found that, in agreement with their different embryonal origin, the over-expression of WT- and C121W-β1 subunits modifies the expression of different gene sets in GH3 and H9C2 cells. Focusing on the effects of the C121W mutation, we found that it causes the modification of 214 genes, most of them were down-regulated (202) in GH3 cells; on the contrary, it determined the up-regulation of only five genes in H9C2 cells. Interestingly, most genes modified by the C121W β1 subunit are involved in pivotal processes of the cell such as cellular communication and protein expression. Our results confirm the important role of the sodium channel β1 subunit in the control of NaCh gene expression, and highlight once more the tissue-specific effect of the C121W mutation.
Collapse
Affiliation(s)
- D Baroni
- Istituto di Biofisica, CNR, Via De Marini 6, 16149 Genova, Italy.
| | - O Moran
- Istituto di Biofisica, CNR, Via De Marini 6, 16149 Genova, Italy
| |
Collapse
|
11
|
Baroni D, Moran O. On the multiple roles of the voltage gated sodium channel β1 subunit in genetic diseases. Front Pharmacol 2015; 6:108. [PMID: 26042039 PMCID: PMC4434899 DOI: 10.3389/fphar.2015.00108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/06/2015] [Indexed: 11/13/2022] Open
Abstract
Voltage-gated sodium channels are intrinsic plasma membrane proteins that initiate the action potential in electrically excitable cells. They are composed of a pore-forming α-subunit and associated β-subunits. The β1-subunit was the first accessory subunit to be cloned. It can be important for controlling cell excitability and modulating multiple aspects of sodium channel physiology. Mutations of β1 are implicated in a wide variety of inherited pathologies, including epilepsy and cardiac conduction diseases. This review summarizes β1-subunit related channelopathies pointing out the current knowledge concerning their genetic background and their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Debora Baroni
- Istituto di Biofisica - Consiglio Nazionale delle Ricerche, Genova Italy
| | - Oscar Moran
- Istituto di Biofisica - Consiglio Nazionale delle Ricerche, Genova Italy
| |
Collapse
|
12
|
Baroni D, Picco C, Barbieri R, Moran O. Antisense-mediated post-transcriptional silencing of SCN1B gene modulates sodium channel functional expression. Biol Cell 2013; 106:13-29. [PMID: 24138709 DOI: 10.1111/boc.201300040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/11/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND INFORMATION Voltage-dependent sodium channels are membrane proteins essential for cell excitability. They are composed by a pore-forming α-subunit and one or more β subunits. Nine α subunit and five β subunit isoforms have been identified in mammals: β1, its splice variant β1B, β2, β3 and β4. Although they do not form the ion channel pore, β subunits modulate both function as well as expression of sodium channels on cell membrane. RESULTS To investigate the role of β1 subunit on the modulation of sodium channel expression, we silenced this auxiliary subunit with specific antisense oligonucleotides (ASONs) in two rat cell lines, the GH3 and the H9C2, from neuro-ectoderm and cardiac myocyte origin, respectively. Treatment of cells with ASONs determined a reduction of about 50% of β1 subunit mRNA and protein expression in both cell lines. We found that this level of β1 subunit silencing resulted in an overall decrease of α subunit mRNA, protein expression and a decrease of sodium current density, without altering significantly the voltage-dependent and kinetic properties of the currents. In GH3 cells, the β1 subunit silencing reduced the expression of Nav1.1, Nav1.3 and Nav1.6 isoforms, whereas the Nav 1.2 isoform expression remained unaltered. The expression of the only α subunit present in H9C2 cells, the Nav1.5, was also reduced by β1 subunit silencing. CONCLUSIONS These results indicate that the β1 subunit may exert an isoform-specific fine-tuned modulation of sodium channel expression.
Collapse
|
13
|
Crystallographic insights into sodium-channel modulation by the β4 subunit. Proc Natl Acad Sci U S A 2013; 110:E5016-24. [PMID: 24297919 DOI: 10.1073/pnas.1314557110] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Voltage-gated sodium (Nav) channels are embedded in a multicomponent membrane signaling complex that plays a crucial role in cellular excitability. Although the mechanism remains unclear, β-subunits modify Nav channel function and cause debilitating disorders when mutated. While investigating whether β-subunits also influence ligand interactions, we found that β4 dramatically alters toxin binding to Nav1.2. To explore these observations further, we solved the crystal structure of the extracellular β4 domain and identified (58)Cys as an exposed residue that, when mutated, eliminates the influence of β4 on toxin pharmacology. Moreover, our results suggest the presence of a docking site that is maintained by a cysteine bridge buried within the hydrophobic core of β4. Disrupting this bridge by introducing a β1 mutation implicated in epilepsy repositions the (58)Cys-containing loop and disrupts β4 modulation of Nav1.2. Overall, the principles emerging from this work (i) help explain tissue-dependent variations in Nav channel pharmacology; (ii) enable the mechanistic interpretation of β-subunit-related disorders; and (iii) provide insights in designing molecules capable of correcting aberrant β-subunit behavior.
Collapse
|