1
|
Dubinin MV, Nedopekina DA, Ilzorkina AI, Semenova AA, Sharapov VA, Davletshin EV, Mikina NV, Belsky YP, Spivak AY, Akatov VS, Belosludtseva NV, Liu J, Belosludtsev KN. Conjugation of Triterpenic Acids of Ursane and Oleanane Types with Mitochondria-Targeting Cation F16 Synergistically Enhanced Their Cytotoxicity against Tumor Cells. MEMBRANES 2023; 13:563. [PMID: 37367767 DOI: 10.3390/membranes13060563] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
The present work shows the cytotoxic effects of novel conjugates of ursolic, oleanolic, maslinic, and corosolic acids with the penetrating cation F16 on cancer cells (lung adenocarcinoma A549 and H1299, breast cancer cell lines MCF-7 and BT474) and non-tumor human fibroblasts. It has been established that the conjugates have a significantly enhanced toxicity against tumor-derived cells compared to native acids and also demonstrate selectivity to some cancer cells. The toxic effect of the conjugates is shown to be due to ROS hyperproduction in cells, induced by the effect on mitochondria. The conjugates caused dysfunction of isolated rat liver mitochondria and, in particular, a decrease in the efficiency of oxidative phosphorylation, a decrease in the membrane potential, and also an overproduction of ROS by organelles. The paper discusses how the membranotropic- and mitochondria-targeted effects of the conjugates may be related to their toxic effects.
Collapse
Affiliation(s)
- Mikhail V Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Darya A Nedopekina
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa 450075, Russia
| | - Anna I Ilzorkina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia
| | - Alena A Semenova
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Vyacheslav A Sharapov
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Eldar V Davletshin
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa 450075, Russia
| | - Natalia V Mikina
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Yuri P Belsky
- Centre of Preclinical Translational Research, Almazov National Medical Research Centre, St. Petersburg 197371, Russia
| | - Anna Yu Spivak
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa 450075, Russia
| | - Vladimir S Akatov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia
| | - Natalia V Belosludtseva
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia
| | - Jiankang Liu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Konstantin N Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia
| |
Collapse
|
2
|
Liu J, Su X, Lu J, Ning J, Lin M, Zhou H. PM 2.5 induces intestinal damage by affecting gut microbiota and metabolites of rats fed a high-carbohydrate diet. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116849. [PMID: 33773181 DOI: 10.1016/j.envpol.2021.116849] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/04/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
PM2.5 has a major impact on the gastrointestinal system, but the specific mechanism behind this action is not fully understood. Current studies have focused on the relationship between PM2.5 and intestinal flora disorder, while ignoring the important influence of diet on gut microbes. In this study, SD rats were fed either a normal, high-fat, or high-carbohydrate diet for two months and exposed to PM2.5 (7 mg/kg b.w.) by intratracheal instillation. The results showed that the body and kidney weights of the rats in the high-fat diet group were significantly increased relative to those with a normal diet, and changes in the intestinal microbes and metabolites induced by PM2.5 were observed. Rats in the high-carbohydrate diet group had a significant response, and the diversity and richness indices of the flora were reduced (p < 0.05); additionally, intestinal Biffidobacterium and Lactobacillus were enriched, while many endogenous metabolites were found. Some amino acids derivatives and long-chain fatty acids were increased (p < 0.05). Both diet structure and PM2.5 exposure can affect the composition of gut microbiota, and intestinal metabolites may be associated with cell membrane damage when a high-carbohydrate diet interacts with PM2.5. This study considers multiple dietary factors to further supplement the evidence of intestinal damage via PM2.5.
Collapse
Affiliation(s)
- Jinhua Liu
- School of Chemistry and Chemical Engineering, Shihezi University, Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Xinjiang, 832003, China
| | - Xianghui Su
- Department of Endocrinology, Changji Branch, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, 831100, China
| | - Jianjiang Lu
- School of Chemistry and Chemical Engineering, Shihezi University, Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Xinjiang, 832003, China.
| | - Jianying Ning
- The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832003, China
| | - Meng Lin
- School of Chemistry and Chemical Engineering, Shihezi University, Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Xinjiang, 832003, China
| | - Hongjuan Zhou
- School of Chemistry and Chemical Engineering, Shihezi University, Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Xinjiang, 832003, China
| |
Collapse
|
3
|
Dubinin MV, Semenova AA, Nedopekina DA, Davletshin EV, Spivak AY, Belosludtsev KN. Effect of F16-Betulin Conjugate on Mitochondrial Membranes and Its Role in Cell Death Initiation. MEMBRANES 2021; 11:membranes11050352. [PMID: 34068772 PMCID: PMC8151401 DOI: 10.3390/membranes11050352] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 01/08/2023]
Abstract
This work demonstrates the effects of a newly synthesized conjugate of the plant triterpenoid betulin and the penetrating cation F16 used for mitochondrial targeting. The resulting F16-betulin conjugate revealed a mitochondria-targeted effect, decreasing the mitochondrial potential and inducing superoxide overproduction in rat thymocytes in vitro. It has been suggested that this may cause the cytotoxic effect of the conjugate, which significantly exceeds the effectiveness of its precursors, betulin and F16. Using isolated rat liver mitochondria, we found that the F16-betulin conjugate has a surface-active effect on mitochondrial membranes, causing organelle aggregation. This effect of the derivative resulted in a dose-dependent decrease in mitochondrial transmembrane potential, as well as suppression of respiration and oxidative phosphorylation, especially in the case of nicotinamide adenine dinucleotide (NAD)-fueled organelles. In addition, the F16-betulin conjugate caused an increase in H2O2 generation by mitochondria fueled with glutamate and malate. These effects of the derivative can presumably be due to the powerful suppression of the redox activity of complex I of the mitochondrial electron transport chain. The paper discusses how the mitochondria-targeted effects of the F16-betulin conjugate may be related to its cytotoxic effects.
Collapse
Affiliation(s)
- Mikhail V. Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (A.A.S.); (K.N.B.)
- Correspondence: ; Tel.: +7-987-701-0437
| | - Alena A. Semenova
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (A.A.S.); (K.N.B.)
| | - Darya A. Nedopekina
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, 450075 Ufa, Russia; (D.A.N.); (E.V.D.); (A.Y.S.)
| | - Eldar V. Davletshin
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, 450075 Ufa, Russia; (D.A.N.); (E.V.D.); (A.Y.S.)
| | - Anna Yu. Spivak
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, 450075 Ufa, Russia; (D.A.N.); (E.V.D.); (A.Y.S.)
| | - Konstantin N. Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia; (A.A.S.); (K.N.B.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
- Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova 38, 119991 Moscow, Russia
| |
Collapse
|
4
|
Semenova AA, Samartsev VN, Dubinin MV. The stimulation of succinate-fueled respiration of rat liver mitochondria in state 4 by α,ω-hexadecanedioic acid without induction of proton conductivity of the inner membrane. Intrinsic uncoupling of the bc 1 complex. Biochimie 2021; 181:215-225. [PMID: 33400934 DOI: 10.1016/j.biochi.2020.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/19/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
The paper shows that natural α,ω-dioic acid, α,ω-hexadecanedioic acid (HDA), is able to stimulate the respiration of succinate-fueled rat liver mitochondria in state 4 without induction of proton conductivity of the inner membrane. This effect of HDA is less pronounced in glutamate/malate-fueled mitochondria, as well as in the case of ascorbate/TMPD or ascorbate/ferrocyanide substrate systems, which transfer electrons directly to cytochrome c. It is noted that HDA-induced stimulation of respiration is not associated with damage to the inner membrane in a part of mitochondria and with shunting of electrons through the bc1 complex. Therefore, HDA can be considered as a natural decoupling agent. Specific inhibitors of the bc1 complex (antimycin A and myxothiazole) as well as malonate and dithionitrobenzoate were used in the inhibitory analysis. These and other experiments have shown that during the oxidation of succinate in liver mitochondria, the decoupling effect of HDA is mainly carried out at the level of the bc1 complex. We hypothesized that HDA is capable of promoting the cyclic transport of protons within the bc1 complex and thus switch this complex to the idle mode of operation (intrinsic uncoupling of the bc1 complex). Induction of free respiration in liver mitochondria by HDA at the level of the bc1 complex is considered as one of the "rescue pathways" of hepatocytes in various pathological conditions, accompanied by disorders of carbohydrate and lipid metabolism and increased oxidative stress.
Collapse
Affiliation(s)
- Alena A Semenova
- Mari State University, Pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia
| | - Victor N Samartsev
- Mari State University, Pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia
| | - Mikhail V Dubinin
- Mari State University, Pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia.
| |
Collapse
|
5
|
Dubinin MV, Semenova AA, Ilzorkina AI, Mikheeva IB, Yashin VA, Penkov NV, Vydrina VA, Ishmuratov GY, Sharapov VA, Khoroshavina EI, Gudkov SV, Belosludtsev KN. Effect of betulin and betulonic acid on isolated rat liver mitochondria and liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183383. [PMID: 32522531 DOI: 10.1016/j.bbamem.2020.183383] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 01/01/2023]
Abstract
The paper considers the effects of plant triterpenoid betulin and its derivative betulonic acid on rat liver mitochondria and liposomes. It was found that betulonic acid and, to a lesser extent, betulin, activate mitochondrial respiration in states 2 and 4 and inhibit ADP- and DNP-stimulated (uncoupled) respiration. The effect of betulonic acid resulted in a significant decrease of the respiratory control and ADP/O ratios and decrease in Δψ. The effects of both compounds were most pronounced in the case of succinate-fueled mitochondrial respiration. This may include both the possible protonophore effect of betulonic acid and the inhibition of respiratory chain complexes by both compounds. Both agents enhanced H2O2 production in succinate-fueled mitochondria, while betulonic acid exerted an antioxidant effect with NAD-dependent substrates. Betulin was found to induce mitochondrial aggregation, but had no effect on membrane permeability. A similar pattern was found on liposomes. As revealed by the laurdan generalized polarization (GP) technique, betulin increased laurdan GP in lecithin liposomes, indicating a decrease in membrane fluidity. Measurements of GP as a function of fluorescence excitation wavelength gave an ascending line for high concentrations of betulin, which can be interpreted as phase heterogeneity of the lipid/betulin system. High concentrations of betulin (> 60 mol%) was also demonstrated to cause permeabilization of lecithin liposomes. Betulonic acid was much less effective in inducing the aggregation of mitochondria and liposomes and had no effect on membrane permeability. The possible mechanisms of betulin and betulonic acid effect on rat liver mitochondria and liposomes are discussed.
Collapse
Affiliation(s)
- Mikhail V Dubinin
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia.
| | - Alena A Semenova
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia
| | - Anna I Ilzorkina
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia
| | - Irina B Mikheeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow Region, 142290, Russia
| | - Valery A Yashin
- Institute of Cell Biophysics, Russian Academy of Sciences, PSCBR RAS, Institutskaya 3, Pushchino, Moscow Region, 142290, Russia
| | - Nikita V Penkov
- Institute of Cell Biophysics, Russian Academy of Sciences, PSCBR RAS, Institutskaya 3, Pushchino, Moscow Region, 142290, Russia
| | - Valentina A Vydrina
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, Prosp. Oktyabrya 71, Ufa, Republic of Bashkortostan, 450054, Russia
| | - Gumer Yu Ishmuratov
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, Prosp. Oktyabrya 71, Ufa, Republic of Bashkortostan, 450054, Russia
| | | | | | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova 38, Moscow, 119991, Russia
| | - Konstantin N Belosludtsev
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El, 424001, Russia; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
6
|
Semenova AA, Samartsev VN, Pavlova SI, Dubinin MV. ω-Hydroxypalmitic and α,ω-Hexadecanedioic Acids As Activators of Free Respiration and Inhibitors of H2O2 Generation in Liver Mitochondria. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2020. [DOI: 10.1134/s1990747819060084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Dubinin MV, Samartsev VN, Stepanova AE, Semenova AA, Khoroshavina EI, Belosludtsev KN. A Comparative Study of the Effects of Palmitic Acid and ω-Hydroxypalmitic Acid as Inducers of Ca2+-Dependent Permeabilization of Liver Mitochondria and Lecithin Liposomes. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919060058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Effect of hypothermia on the functional activity of liver mitochondria of grass snake (Natrix natrix): inhibition of succinate-fueled respiration and K + transport, ROS-induced activation of mitochondrial permeability transition. J Bioenerg Biomembr 2019; 51:219-229. [PMID: 30982206 DOI: 10.1007/s10863-019-09796-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/04/2019] [Indexed: 12/16/2022]
Abstract
The article considers the comparative analysis of the functional activity of mitochondria isolated from the liver of grass snakes, Natrix natrix (Linnaeus, 1758) that were kept at different temperatures (23-26 °C and 4-5 °C). It was found that liver mitochondria of hypothermia-exposed grass snakes are characterized by weak coupling of oxidative phosphorylation as compared to mitochondria of active animals which is caused by inhibition of succinate-fuelled respiration in ADP-stimulated state, as well as by activation of basal non-phosphorylating rate. Inhibition of mitochondrial respiration in hibernating animals is associated with a decrease in the activity of the respiratory chain complexes of organelles. A significant decrease in the rate of K+ transport in the liver mitochondria of hibernating animals has been established. Under these conditions, a decrease in the calcium capacity of the organelles was also revealed, which indicates a decrease in the resistance of the mitochondria of hibernating animals to the induction of the Ca2+-dependent mitochondrial pore. All these changes in the functional activity of mitochondria are observed on the background of increasing H2O2 production as well as increasing the proportion of polyunsaturated fatty acids in phospholipid composition of mitochondrial membranes, which are the targets of reactive oxygen species. It can lead to increased formation of lipid peroxides and activation of destructive processes associated with the induction of Ca2+-dependent mitochondrial pore.
Collapse
|