1
|
Ma R, Zhu B, Xiong J, Chen J. The Pathogenic Mechanism of Enterocytozoon hepatopenaei in Litopenaeus vannamei. Microorganisms 2024; 12:1208. [PMID: 38930590 PMCID: PMC11205940 DOI: 10.3390/microorganisms12061208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Enterocytozoon hepatopenaei (EHP) is a parasite in shrimp farming. EHP mainly parasitizes the hepatopancreas of shrimp, causing slow growth, which severely restricts the economic income of shrimp farmers. To explore the pathogenic mechanism of EHP, the host subcellular construction, molecular biological characteristics, and mitochondrial condition of Litopenaeus vannamei were identified using transmission electron microscopy (TEM), real-time qPCR, an enzyme assay, and flow cytometry. The results showed that EHP spores, approximately 1 μm in size, were located on the cytoplasm of the hepatopancreas. The number of mitochondria increased significantly, and mitochondria morphology showed a condensed state in the high-concentration EHP-infected shrimp by TEM observation. In addition, there were some changes in mitochondrial potential, but apoptosis was not significantly different in the infected shrimp. The qPCR results showed that the gene expression levels of hexokinase and pyruvate kinase related to energy metabolism were both upregulated in the diseased L. vannamei. Enzymatic activity showed hexokinase and lactate dehydrogenase were significantly increased in the shrimp infected with EHP, indicating EHP infection can increase the glycolysis process and decrease the oxidative phosphorylation process of L. vannamei. Previous transcriptomic data analysis results also support this conclusion.
Collapse
Affiliation(s)
- Rongrong Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (R.M.); (B.Z.); (J.X.)
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Bo Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (R.M.); (B.Z.); (J.X.)
| | - Jinbo Xiong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (R.M.); (B.Z.); (J.X.)
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (R.M.); (B.Z.); (J.X.)
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
2
|
Rodriguez-Armenta C, Reyes-Zamora O, De la Re-Vega E, Sanchez-Paz A, Mendoza-Cano F, Mendez-Romero O, Gonzalez-Rios H, Muhlia-Almazan A. Adaptive mitochondrial response of the whiteleg shrimp Litopenaeus vannamei to environmental challenges and pathogens. J Comp Physiol B 2021; 191:629-644. [PMID: 33895873 DOI: 10.1007/s00360-021-01369-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/03/2021] [Accepted: 04/13/2021] [Indexed: 01/01/2023]
Abstract
In most eukaryotic organisms, mitochondrial uncoupling mechanisms control ATP synthesis and reactive oxygen species production. One such mechanism is the permeability transition of the mitochondrial inner membrane. In mammals, ischemia-reperfusion events or viral diseases may induce ionic disturbances, such as calcium overload; this cation enters the mitochondria, thereby triggering the permeability transition. This phenomenon increases inner membrane permeability, affects transmembrane potential, promotes mitochondrial swelling, and induces apoptosis. Previous studies have found that the mitochondria of some crustaceans do not exhibit a calcium-regulated permeability transition. However, in the whiteleg shrimp Litopenaeus vannamei, contradictory evidence has prevented this phenomenon from being confirmed or rejected. Both the ability of L. vannamei mitochondria to take up large quantities of calcium through a putative mitochondrial calcium uniporter with conserved characteristics and permeability transition were investigated in this study by determining mitochondrial responses to cations overload. By measuring mitochondrial swelling and transmembrane potential, we investigated whether shrimp exposure to hypoxia-reoxygenation events or viral diseases may induce mitochondrial permeability transition. The results of this study demonstrate that shrimp mitochondria take up large quantities of calcium through a canonical mitochondrial calcium uniporter. Neither calcium nor other ions were observed to promote permeability transition. This phenomenon does not depend on the life cycle stage of shrimp, and it is not induced during hypoxia/reoxygenation events or in the presence of viral diseases. The absence of the permeability transition phenomenon and its adaptive meaning are discussed as a loss with biological advantages, possibly enabling organisms to survive under harsh environmental conditions.
Collapse
Affiliation(s)
- Chrystian Rodriguez-Armenta
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., (CIAD), Carretera Gustavo Enrique Astiazaran Rosas 46, 83304, Hermosillo, Sonora, Mexico
| | - Orlando Reyes-Zamora
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., (CIAD), Carretera Gustavo Enrique Astiazaran Rosas 46, 83304, Hermosillo, Sonora, Mexico
| | - Enrique De la Re-Vega
- Department of Scientific and Technological Research, Universidad de Sonora (DICTUS), 83000, Hermosillo, Sonora, Mexico
| | - Arturo Sanchez-Paz
- Laboratorio de Virologia. Centro de Investigaciones Biologicas del Noroeste S.C. (CIBNOR), Calle Hermosa 101, Col. Los Angeles, 83106, Hermosillo, Sonora, Mexico
| | - Fernando Mendoza-Cano
- Laboratorio de Virologia. Centro de Investigaciones Biologicas del Noroeste S.C. (CIBNOR), Calle Hermosa 101, Col. Los Angeles, 83106, Hermosillo, Sonora, Mexico
| | - Ofelia Mendez-Romero
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., (CIAD), Carretera Gustavo Enrique Astiazaran Rosas 46, 83304, Hermosillo, Sonora, Mexico
| | - Humberto Gonzalez-Rios
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., (CIAD), Carretera Gustavo Enrique Astiazaran Rosas 46, 83304, Hermosillo, Sonora, Mexico
| | - Adriana Muhlia-Almazan
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., (CIAD), Carretera Gustavo Enrique Astiazaran Rosas 46, 83304, Hermosillo, Sonora, Mexico.
| |
Collapse
|
3
|
Functional characterization of the mitochondrial uncoupling proteins from the white shrimp Litopenaeus vannamei. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148209. [PMID: 32305415 DOI: 10.1016/j.bbabio.2020.148209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/19/2020] [Accepted: 04/14/2020] [Indexed: 01/21/2023]
Abstract
Mitochondrial uncoupling proteins (UCPs) play an essential role in dissipating the proton gradient and controlling the mitochondrial inner membrane potential. When active, UCPs promote proton leak across the inner membrane, oxidative phosphorylation uncoupling, oxygen uptake increase and decrease the ATP synthesis. Invertebrates possess only isoforms UCP4 and UCP5, however, the role of these proteins is not clear in most species since it may depend on the physiological needs of each animal. This study presents the first functional characterization of crustacean uncoupling proteins from the white shrimp Litopenaeus vannamei LvUCP4 and LvUCP5. Free radicals production in various shrimp organs/tissues was first evaluated, and mitochondria were isolated from shrimp pleopods. The oxygen consumption rate, membrane potential and proton transport of the isolated non-phosphorylating mitochondria were used to determine LvUCPs activation/inhibition. Results indicate that UCPs activity is stimulated in the presence of 4-hydroxyl-2-nonenal (HNE) and myristic acid, and inhibited by the purine nucleotide GDP. A hypoxia/re-oxygenation assay was conducted to determine whether UCPs participate in shrimp mitochondria response to oxidative stress. Isolated mitochondria from shrimp at re-oxygenation produced large quantities of hydrogen peroxide and higher levels of both LvUCPs were immunodetected. Results suggest that, besides the active response of the shrimp antioxidant system, UCP-like activity is activated after hypoxia exposure and during re-oxygenation. LvUCPs may represent a mild uncoupling mechanism, which may be activated before the antioxidant system of cells, to early control reactive oxygen species production and oxidative damage in shrimp.
Collapse
|