1
|
Mizzoni D, Logozzi M, Di Raimo R, Spada M, Fais S. Hydrogen-Rich Alkaline Water Supplementation Restores a Healthy State and Redox Balance in H 2O 2-Treated Mice. Int J Mol Sci 2024; 25:6736. [PMID: 38928440 PMCID: PMC11203767 DOI: 10.3390/ijms25126736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Water is a major requirement for our bodies, and alkaline water has induced an antioxidant response in a model of natural aging. A series of recent reports have shown that aging is related to reduced water intake. Hydrogen-rich water has been suggested to exert a general antioxidant effect in relation to both improving lifestyle and preventing a series of diseases. Here, we wanted to investigate the effect of the daily intake of hydrogen-rich alkaline water (HAW) in counteracting the redox imbalance induced in a model of H2O2-treated mice. Mice were treated with H2O2 for two weeks and either left untreated or supplied with HAW. The results show that HAW induced a reduction in the ROS plasmatic levels that was consistent with the increase in the circulating glutathione. At the same time, the reduction in plasmatic 8-hydroxy-2'-deoxyguanosine was associated with reduced DNA damage in the whole body. Further analysis of the spleen and bone marrow cells showed a reduced ROS content consistent with a significantly reduced mitochondrial membrane potential and superoxide accumulation and an increase in spontaneous proliferation. This study provides evidence for a clear preventive and curative effect of HAW in a condition of systemic toxic condition and redox imbalance.
Collapse
Affiliation(s)
- Davide Mizzoni
- Exo Lab Italia, Tecnopolo d’Abruzzo, Strada Statale 17, Località Boschetto di Pile, 67100 L’Aquila, Italy; (D.M.); (R.D.R.)
| | - Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Rossella Di Raimo
- Exo Lab Italia, Tecnopolo d’Abruzzo, Strada Statale 17, Località Boschetto di Pile, 67100 L’Aquila, Italy; (D.M.); (R.D.R.)
| | - Massimo Spada
- Department of Centro Nazionale Sperimentazione e Benessere Animale, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| |
Collapse
|
2
|
Cao C, Yu P, Chu C, Wang Z, Xu W, Cheng F, Zhao H, Qiu Z. Magnesium hydride attenuates intestinal barrier injury during hemorrhage shock by regulating neutrophil extracellular trap formation via the ROS/MAPK/PAD4 pathway. Int Immunopharmacol 2024; 130:111688. [PMID: 38394886 DOI: 10.1016/j.intimp.2024.111688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
Magnesium hydride (MgH2) is a hydrogen storage material that is known for its high capacity and safety and is capable of releasing hydrogen in a controlled manner when administered orally. This release of hydrogen has been associated with a range of biological effects, including anti-inflammatory properties, antioxidant activity, and protection of the intestinal barrier. Previous research has shown that neutrophil extracellular traps (NETs) play a role in the dysfunction of the intestinal barrier in conditions such as sepsis and critical illnesses. However, it remains unclear as to whether MgH2 can protect the intestinal barrier by inhibiting NET formation, and the underlying mechanisms have yet to be elucidated. A rat model of hemorrhagic shock was created, and pretreatment or posttreatment procedures with MgH2 were performed. After 24 h, samples from the small intestine and blood were collected for analysis. In vitro, human neutrophils were incubated with either phorbol-12-myristate-13-acetate (PMA) or MgH2. Reactive oxygen species generation and the expression of key proteins were assessed. The results demonstrated that MgH2 administration led to a decrease in inflammatory cytokines in the serum and mitigated distant organ dysfunction in rats with HS. Furthermore, MgH2 treatment reversed histopathological damage in the intestines, improved intestinal permeability, and enhanced the expression of tight junction proteins (TJPs) during HS. Additionally, MgH2 treatment was found to suppress NET formation in the intestines. In vitro pretreatment with MgH2 alleviated intestinal monolayer barrier disruption that was induced by NETs. Mechanistically, MgH2 pretreatment reduced ROS production and NET formation, inhibited the activation of ERK and p38, and suppressed the expression of the PAD4 protein. These findings indicated that MgH2 may inhibit NET formation in a ROS/MAPK/PAD4-dependent manner, which reduces NET-related intestinal barrier damage, thus offering a novel protective role in preventing intestinal barrier dysfunction during HS.
Collapse
Affiliation(s)
- Changkui Cao
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, China; Department of Emergency, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Pan Yu
- Department of Burn and Plastic Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chengnan Chu
- Department of Emergency, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Zhenjie Wang
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, China
| | - Weiqi Xu
- Department of Emergency, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Feng Cheng
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, China
| | - Heng Zhao
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, China
| | - Zhaolei Qiu
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, China.
| |
Collapse
|
3
|
Effects of Clopidogrel Rehabilitation on Cardiac Protein Kinase C, Cardiac Heat Shock Protein 70, and CI in MIRI Rat Model. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5823276. [PMID: 36277878 PMCID: PMC9584675 DOI: 10.1155/2022/5823276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/18/2022]
Abstract
In order to investigate the effects of clopidogrel rehabilitation on the levels of cardiac protein kinase C (PKC), cardiac heat shock protein 70 (HSP70), and cardiac index (CI) in rats with myocardial ischemia-reperfusion injury (MIRI), sixty Wistar rats are randomly divided into three groups (sham operation group, model group, and clopidogrel group), with 20 rats in each group. The clopidogrel group is given clopidogrel by gavage, and the sham operation group and the model group are given the same amount of normal saline by gavage. The experimental results show that compared with the model group, the clopidogrel group has clear horizontal lines and cell edema. The myocardial infarction rate, creatine kinase-MB (CK-MB), and malondialdehyde (MDA) of the model group and clopidogrel group in the control sham operation group significantly increase.
Collapse
|