1
|
Aliouche N, Sifour M, Kebsa W, Ouled-Haddar H. Exploring the hepatoprotective potential of the probiotic Lactiplantibacillus plantarum E1K2R2 and its exopolysaccharide-postbiotic on ibuprofen-induced acute liver injury in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03486-w. [PMID: 39333280 DOI: 10.1007/s00210-024-03486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
The present study investigates the hepatoprotective effect of a probiotic Lactiplantibacillus plantarum E1K2R2 and its exopolysaccharide (EPS) against ibuprofen-induced acute liver injury, and to explore the involved underlying mechanisms. Hepatotoxicity was induced by administration of a single dose of ibuprofen (200 mg/kg body weight). The Lpb. plantarum E1K2R2 (109 CFU) and its EPS (200 mg/kg bw) were separately used to feed rats for seven consecutive days before ibuprofen administration. Liver toxicity was assessed by monitoring levels of serum liver enzymes, liver relative weight, oxidative stress and inflammatory markers, and through histopathological analysis. The results showed that ibuprofen administration significantly increased (P < 0.05) liver relative weight, elevated levels of alanine-amino transferase (ALT), aspartate-amino transferase (AST), decreased hepatic gluthatione (GSH) and endogenous antioxidant enzymes including, superoxide dismutase (SOD), catalase (CAT) and increased malondialdehyde (MDA) levels, nitric oxide (NO) and myeloperoxidase (MPO) in hepatic tissues. However, pre-treatment with Lpb. plantarum E1K2R2 and its EPS significantly attenuated these toxicity manifestations. Both pre-treatments restored liver weight, normalized transaminase enzyme levels, enhanced the activity of liver antioxidant enzymes (SOD and CAT), increased GSH content, and significantly reduced NO, MPO and MDA levels (P < 0.05), indicating their protective role against oxidative stress and inflammatory response induced by ibuprofen. Furthermore, histopathological analysis confirmed regular liver morphology in rats pre-treated with the probiotic and its EPS. These findings highlight the potential effectiveness of the probiotic Lpb. plantarum E1K2R2 and its EPS in mitigating ibuprofen-induced liver toxicity.
Collapse
Affiliation(s)
- Nadia Aliouche
- Laboratory of Molecular Toxicology, Faculty of Nature and Life Sciences, University of Jijel, 18000, Jijel, Algeria.
| | - Mohamed Sifour
- Laboratory of Molecular Toxicology, Faculty of Nature and Life Sciences, University of Jijel, 18000, Jijel, Algeria
| | - Widad Kebsa
- Laboratory of Molecular Toxicology, Faculty of Nature and Life Sciences, University of Jijel, 18000, Jijel, Algeria
| | - Houria Ouled-Haddar
- Laboratory of Molecular Toxicology, Faculty of Nature and Life Sciences, University of Jijel, 18000, Jijel, Algeria
| |
Collapse
|
2
|
Noor S, Ali S, Summer M, Riaz A, Nazakat L, Aqsa. Therapeutic Role of Probiotics Against Environmental-Induced Hepatotoxicity: Mechanisms, Clinical Perspectives, Limitations, and Future. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10365-6. [PMID: 39316257 DOI: 10.1007/s12602-024-10365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
Hepatotoxicity is one of the biggest health challenges, particularly in the context of liver diseases, often aggravated by gut microbiota dysbiosis. The gut-liver axis has been regarded as a key idea in liver health. It indicates that changes in gut flora caused by various hepatotoxicants, including alcoholism, acetaminophen, carbon tetrachloride, and thioacetamide, can affect the balance of the gut's microflora, which may lead to increased dysbiosis and intestinal permeability. As a result, bacterial endotoxins would eventually enter the bloodstream and liver, causing hepatotoxicity and inducing inflammatory reactions. Many treatments, including liver transplantation and modern drugs, can be used to address these issues. However, because of the many side effects of these approaches, scientists and medical experts are still hoping for a therapeutic approach with fewer side effects and more positive results. Thus, probiotics have become well-known as an adjunctive strategy for managing, preventing, or reducing hepatotoxicity in treating liver injury. By altering the gut microbiota, probiotics offer a secure, non-invasive, and economical way to improve liver health in the treatment of hepatotoxicity. Through various mechanisms such as regulation of gut microbiota, reduction of pathogenic overgrowth, suppression of inflammatory mediators, modification of hepatic lipid metabolism, improvement in the performance of the epithelial barrier of the gut, antioxidative effects, and modulation of mucosal immunity, probiotics play their role in the treatment and prevention of hepatotoxicity. This review highlights the mechanistic effects of probiotics in environmental toxicants-induced hepatotoxicity and current findings on this therapeutic approach's experimental and clinical trials.
Collapse
Affiliation(s)
- Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Anfah Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Laiba Nazakat
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Aqsa
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
3
|
Bedoui A, Mufti A, Feriani A, Baccari H, Bouallegue A, Kharrat M, Sobeh M, Amri M, Abbes Z. Unlocking the hepatoprotective potential of the parasitic plant Orobanche foetida Poir. aqueous extract against CCl 4-induced liver injury in rat. Front Pharmacol 2024; 14:1320062. [PMID: 38239200 PMCID: PMC10794580 DOI: 10.3389/fphar.2023.1320062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
In this current study, we explored the preventive capacity of the aqueous extract of Orobanche foetida (OF), a root holoparasite, against CCl4 prompt hepatotoxicity in rats. LC-MS/MS profiling revealed the existence of 32 compounds belonging to organic acids, benzoic acid derivatives, and hydroxycinnamic acids along with their glycosides and derivatives as well as several flavonoids. In vitro, OF demonstrated substantial antioxidant potential at DPPH and ABTS assays. Results showed that the pretreatment with OF for 6 weeks at the doses (25 mg/kg bw) and (50 mg/kg bw) countered the CCl4-induced liver injury by restoring liver injuries indicators (ALT, AST, LDH, ALP, GGT and bilirubin), normalizing lipid profile (TC, TG, LDL-C, and HDL-C), as well as, impeding DNA fragmentation. Furthermore, OF blocked the hepatic oxidative stress spurred by CCl4 administration through boosting antioxidant enzymes (GSH, CAT, and SOD) responsible of diminishing lipid peroxidation. exhibited an anti-inflammatory effect by downregulating TNF-α and IL-6 levels. OF suppressive effect on proinflammatory cytokines is further exerted by its capacity to modulate the expression of the NF-κB gene. In silico investigation revealed that among the 32 identified compounds, vanillic acid glucoside and dihydroxybenzoic acid glucoside have strong and stable bindings with the active sites of three key inflammatory proteins (PARP-1, TNF-α, IL-6), which could highlight the antioxidant and anti-inflammatory capacity of. Overall, this research provides a preliminary pharmacological support for the medicinal applications of Orobanche foetida for addressing inflammatory and hepato-pathological conditions.
Collapse
Affiliation(s)
- Arij Bedoui
- Carthage University, Field Crop Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Menzah 1, Tunisia
| | - Afoua Mufti
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Anouar Feriani
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Hanene Baccari
- Carthage University, Field Crop Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Menzah 1, Tunisia
| | - Amal Bouallegue
- Carthage University, Field Crop Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Menzah 1, Tunisia
| | - Mohamed Kharrat
- Carthage University, Field Crop Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Menzah 1, Tunisia
| | - Mansour Sobeh
- AgroBioSciences Program, College for Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Moez Amri
- AgroBioSciences Program, College for Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Zouhaier Abbes
- Carthage University, Field Crop Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Menzah 1, Tunisia
| |
Collapse
|
4
|
Kar F, Yıldız F, Hacioglu C, Kar E, Donmez DB, Senturk H, Kanbak G. LoxBlock-1 or Curcumin attenuates liver, pancreas and cardiac ferroptosis, oxidative stress and injury in Ischemia/reperfusion-damaged rats by facilitating ACSL/GPx4 signaling. Tissue Cell 2023; 82:102114. [PMID: 37210761 DOI: 10.1016/j.tice.2023.102114] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
In this study, the effects of the pretreatment of Curcumin and LoxBlock-1 on liver, pancreas, and cardiac dysfunction following Ischemia-Reperfusion-induced (IR) Acute Kidney Injury (AKI) were investigated through the mechanisms of oxidative stress and ferroptosis. Total antioxidant status (TAS), total oxidant status (TOS) and oxidative stress index (OSI) parameters in the tissue were analyzed to investigate the oxidative stress occurring in the liver, pancreas, and heart, and Acyl-Coa synthetase long-chain family member (ACSL4). Glutathione peroxidase 4 (GPx4) enzyme levels were also analyzed by ELISA to investigate the effect on ferroptosis. In addition, hematoxylin-eosin staining was performed for histopathological examination of the tissues. As a result of biochemical analyzes, it was observed that oxidative stress parameters increased significantly in the IR group. In addition, while the ACSL4 enzyme level increased in the IR group in all tissues, the GPx4 enzyme level decreased. In the histopathological examination, it was observed that IR caused serious damage to the heart, liver, and pancreas tissues. The present study shows that Curcumin and LoxBlock-1 have a protective effect on the liver, pancreas, and cardiac ferroptosis following the effect on AKI. In addition, Curcumin was found to be more effective than LoxBlock-1 in I/R injury with its antioxidant property.
Collapse
Affiliation(s)
- Fatih Kar
- Department of Medical Biochemistry, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Turkey
| | - Fatma Yıldız
- Department of Medical Laboratory Techniques, Health Services Vocational School, Alanya Alaaddin Keykubat University, Alanya, Turkey.
| | - Ceyhan Hacioglu
- Department of Biochemistry, Faculty of Pharmacy, Duzce University, Duzce, Turkey
| | - Ezgi Kar
- Training and Research Center, Kütahya Health Science University, Kütahya, Turkey
| | - Dilek Burukoglu Donmez
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Hakan Senturk
- Department of Biology, Faculty of Sciences, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Gungor Kanbak
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
5
|
Melo MNDO, Batista JVDC, Peñaloza EMC, Oliveira AP, Garrett R, Baumgartner S, Holandino C. A Scoping Review of Genus Viscum: Biological and Chemical Aspects of Alcoholic Extracts. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091811. [PMID: 37176869 PMCID: PMC10181296 DOI: 10.3390/plants12091811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
The genus Viscum comprises a large number of semi-parasitic shrubs popularly known as Mistletoe. The Viscum species grow in many countries of Europe, Africa and Asia with different popular uses in ornamentation, foods and medicine. Many studies about Viscum have been done over the last years focusing on biological activities and chemical composition of the aqueous extracts, mainly related to anthroposophical medicines. However, it is known that non-aqueous preparations, as alcoholic extracts, have demonstrated different biological activities that are species-and host tree-dependent. Considering the potential of these alcoholic extracts, a scoping review was conducted using data from three online databases: PubMed, Scopus and Embase. Inclusion criteria consisted of the in vitro, in vivo, ex vivo, clinical and chemical studies of alcoholic extracts from Viscum species. The present review summarized 124 original publications about fourteen Viscum species. Viscum album, Viscum articulatum and Viscum coloratum were the main studied species. Alcoholic extracts demonstrated hypotensive, anticancer, antimicrobial, analgesic and anti-inflammatory capabilities, among other biological activities. Flavonoids, phenolic acids and terpenoids represented 48%, 24% and 11% of the total identified compounds, respectively. This review contributes to the knowledge of alcoholic preparations of the Viscum species and points out the lack of clinical studies concerning these different extracts.
Collapse
Affiliation(s)
- Michelle Nonato de Oliveira Melo
- Multidisciplinary Laboratory of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Metabolomics Laboratory, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - João Vitor da Costa Batista
- Society for Cancer Research, Hiscia Institute, Kirschweg 9, 4144 Arlesheim, Switzerland
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, 4056 Basel, Switzerland
| | - Evelyn Maribel Condori Peñaloza
- Multidisciplinary Laboratory of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Metabolomics Laboratory, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Adriana Passos Oliveira
- Multidisciplinary Laboratory of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Rafael Garrett
- Metabolomics Laboratory, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
| | - Stephan Baumgartner
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, 4056 Basel, Switzerland
- Institute of Integrative Medicine, University of Witten/Herdecke, Gerhard-Kienle-Weg 4, 58313 Herdecke, Germany
- Institute of Complementary and Integrative Medicine, University of Bern, Freiburgstrasse 46, 3010 Bern, Switzerland
| | - Carla Holandino
- Multidisciplinary Laboratory of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Society for Cancer Research, Hiscia Institute, Kirschweg 9, 4144 Arlesheim, Switzerland
| |
Collapse
|