1
|
Ali EAA, Hussein NA, El-Hakim AE, Amer MA, Shahein YE. Cloning and catalytic profile of Hyalomma dromedarii leucine aminopeptidase. Int J Biol Macromol 2024; 268:131778. [PMID: 38657929 DOI: 10.1016/j.ijbiomac.2024.131778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Ticks have harmful impacts on both human and animal health and cause considerable economic losses. Leucine aminopeptidase enzymes (LAP) play important roles during tick infestation to liberate vital amino acids necessary for growth. The aim of the current study is to identify, express and characterize the LAP from the hard tick Hyalomma dromedarii and elucidate its biochemical characteristics. We cloned an open reading frame of 1560 bp encoding a protein of 519 amino acids. The LAP full-length was expressed in Escherichia coli BL21 (DE3) and purified. The recombinant enzyme (H.d rLAP- 6×His) had a predicted molecular mass of approximately 55 kDa. Purification and the enzymatic characteristics of H.d rLAP- 6×His were studied. The purified enzyme showed maximum activity at 37 °C and pH 8.0-8.5 using Leu-p-nitroanilide as a substrate. The activity of H.d rLAP- 6×His was sensitive to β-mercaptoethanol, dl-dithiothreitol, 1,10- phenanthroline, bestatin HCl, and EDTA and completely abolished by 0.05 % SDS. In parallel, the enzymatic activity was enhanced by Ni2+, Mn2+ and Mg2+, partially inhibited by Na+, Cu2+, Ca2+ and completely inhibited by Zn2+.
Collapse
Affiliation(s)
- Esraa A A Ali
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Nahla A Hussein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, 12622 Cairo, Egypt.
| | - Amr E El-Hakim
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Mahmoud A Amer
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Yasser E Shahein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, 12622 Cairo, Egypt.
| |
Collapse
|
2
|
Sinha D, Mondal R, Mahapa A, Sau K, Chattopadhyaya R, Sau S. A staphylococcal anti-sigma factor possesses a single-domain, carries different denaturant-sensitive regions and unfolds via two intermediates. PLoS One 2018; 13:e0195416. [PMID: 29621342 PMCID: PMC5886543 DOI: 10.1371/journal.pone.0195416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/21/2018] [Indexed: 11/26/2022] Open
Abstract
RsbW, an anti-sigma factor possessing kinase activity, is expressed by many Gram-positive bacteria including Staphylococcus aureus. To obtain clues about the domain structure and the folding-unfolding mechanism of RsbW, we have elaborately studied rRsbW, a recombinant S. aureus RsbW. Sequence analysis of the protein fragments, generated by the limited proteolysis of rRsbW, has proposed it to be a single-domain protein. The unfolding of rRsbW in the presence of GdnCl or urea was completely reversible in nature and occurred through the formation of at least two intermediates. The structure, shape, and the surface hydrophobicity of no intermediate completely matches with those of other intermediates or the native rRsbW. Interestingly, one of the intermediates, formed in the presence of less GdnCl concentrations, has a molten globule-like structure. Conversely, all of the intermediates, like native rRsbW, exist as dimers in aqueous solution. The putative molten globule and the urea-generated intermediates also have retained some kinase activity. Additionally, the putative ATP binding site/catalytic site of rRsbW shows higher denaturant sensitivity than the tentative dimerization region of this enzyme.
Collapse
Affiliation(s)
- Debabrata Sinha
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Rajkrishna Mondal
- Department of Biotechnology, Nagaland University, Dimapur, Nagaland, India
| | - Avisek Mahapa
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
| | - Keya Sau
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
| | | | - Subrata Sau
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
3
|
Sierra EM, Pereira MR, Maester TC, Gomes-Pepe ES, Mendoza ER, Lemos EGDM. Halotolerant aminopeptidase M29 from Mesorhizobium SEMIA 3007 with biotechnological potential and its impact on biofilm synthesis. Sci Rep 2017; 7:10684. [PMID: 28878230 PMCID: PMC5587760 DOI: 10.1038/s41598-017-10932-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/16/2017] [Indexed: 12/04/2022] Open
Abstract
The aminopeptidase gene from Mesorhizobium SEMIA3007 was cloned and overexpressed in Escherichia coli. The enzyme called MesoAmp exhibited optimum activity at pH 8.5 and 45 °C and was strongly activated by Co2+ and Mn2+. Under these reaction conditions, the enzyme displayed Km and kcat values of 0.2364 ± 0.018 mM and 712.1 ± 88.12 s−1, respectively. Additionally, the enzyme showed remarkable stability in organic solvents and was active at high concentrations of NaCl, suggesting that the enzyme might be suitable for use in biotechnology. MesoAmp is responsible for 40% of the organism’s aminopeptidase activity. However, the enzyme’s absence does not affect bacterial growth in synthetic broth, although it interfered with biofilm synthesis and osmoregulation. To the best of our knowledge, this report describes the first detailed characterization of aminopeptidase from Mesorhizobium and suggests its importance in biofilm formation and osmotic stress tolerance. In summary, this work lays the foundation for potential biotechnological applications and/or the development of environmentally friendly technologies and describes the first solvent- and halo-tolerant aminopeptidases identified from the Mesorhizobium genus and its importance in bacterial metabolism.
Collapse
Affiliation(s)
- Elwi Machado Sierra
- Department of Technology, São Paulo State University, Jaboticabal, São Paulo State, Brazil.,Universidad Simón Bolívar, Barranquilla, Colombia
| | | | | | - Elisangela Soares Gomes-Pepe
- Department of Technology, São Paulo State University, Jaboticabal, São Paulo State, Brazil.,Institute for Research in Bioenergy (IPBEN), Jaboticabal, São Paulo State, Brazil
| | - Elkin Rodas Mendoza
- Department of Technology, São Paulo State University, Jaboticabal, São Paulo State, Brazil
| | - Eliana G de Macedo Lemos
- Department of Technology, São Paulo State University, Jaboticabal, São Paulo State, Brazil. .,Institute for Research in Bioenergy (IPBEN), Jaboticabal, São Paulo State, Brazil. .,Av. Prof. Paulo Donato Castellane, s/n. Jaboticabal, Post code 14884-900, São Paulo State, Brazil.
| |
Collapse
|
4
|
High-level expression and characterization of the Bacillus subtilis subsp. subtilis str. BSP1 YwaD aminopeptidase in Pichia pastoris. Protein Expr Purif 2016; 122:23-30. [PMID: 26898926 DOI: 10.1016/j.pep.2016.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/29/2016] [Accepted: 02/15/2016] [Indexed: 01/16/2023]
Abstract
Aminopeptidases are widely used for creating protein hydrolysates and peptide sequencing. The ywaD gene from a new Bacillus isolate, named Bacillus subtilis subsp. subtilis str. BSP1, was cloned into the yeast expression vector pHBM905A and expressed and secreted by Pichia pastoris strain GS115. The deduced amino acid sequence of the aminopeptidase encoded by the ywaD gene shared up to 98% identity with aminopeptidases from B. subtilis strains 168 and zj016. The yield (3.81 g/l) and specific activity (788 U/mg) of recombinant YwaD in high-density fermentation were extremely high. And 829.83 mg of the purified enzyme (4089.72 U/mg) were harvested. YwaD was glycosylated, and its activity decreased after deglycosylation, which was similar to that of the aminopeptidase from B. subtilis strain zj016. YwaD was most active toward l-arginine-4-nitroanilide. Moreover, it exhibited high resistance to carbamide, which was not true for aminopeptidases from B. subtilis strains 168 and zj016, which could simplify the purification of YwaD. Moreover, the expression and parts of characterization of the aminopeptidase from B. subtilis strain 168 in Pichia pastoris were added as supplementary material. The sequence and other characteristics of YwaD were compared with those of aminopeptidases from B. subtilis strains 168 and zj016, and they will provide a solid foundation for further research on the influence of amino acid mutations on the function of aminopeptidases.
Collapse
|
5
|
Cheng C, Wang X, Dong Z, Shao C, Yang Y, Fang W, Fang C, Wang H, Yang M, Jiang L, Zhou X, Song H. Aminopeptidase T of M29 Family Acts as A Novel Intracellular Virulence Factor for Listeria monocytogenes Infection. Sci Rep 2015; 5:17370. [PMID: 26610705 PMCID: PMC4661694 DOI: 10.1038/srep17370] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/29/2015] [Indexed: 01/18/2023] Open
Abstract
The foodborne pathogen Listeria monocytogenes employs a number of virulence determinants including metalloproteases to infect hosts. Here for the first time, we identified an M29 family aminopeptidase T (encoded by lmo1603) from L. monocytogenes that possesses a typical feature to catalyze the cleavage of amino acids from peptide substrates, with a preference for arginine. The purified recombinant Lmo1603 was activated by Fe3+, Zn2+ and Mn2+, but strongly stimulated by Co2+, indicating that Lmo1603 is a cobalt-dependent aminopeptidase. Single mutation at any of the Glu216, Glu281, His308, Tyr315, His327, and Asp329 completely abolished the enzymatic activity of Lmo1603. More importantly, we showed that Lmo1603 was mainly involved in Listeria infection, but not required for growth in rich laboratory medium and minimal defined medium. Disruption of Lmo1603 resulted in almost complete attenuation of Listeria virulence in a mouse infection model. In addition, we demonstrated that Lmo1603 was mainly localized in the bacterial cytosol and required for invasion and survival inside human epithelial cells and murine macrophages. We conclude that Lmo1603 encodes a functional aminopeptidase T of M29 family, which acts as a novel intracellular virulence factor essential in the successful establishment of L. monocytogenes infections in a mouse model.
Collapse
Affiliation(s)
- Changyong Cheng
- College of Animal Science and Technology, Zhejiang A&F University, 88 Huanchengbei Road, Lin'an, Zhejiang 311300, P. R. China
| | - Xiaowen Wang
- College of Animal Science and Technology, Zhejiang A&F University, 88 Huanchengbei Road, Lin'an, Zhejiang 311300, P. R. China
| | - Zhimei Dong
- College of Animal Science and Technology, Zhejiang A&F University, 88 Huanchengbei Road, Lin'an, Zhejiang 311300, P. R. China
| | - Chunyan Shao
- College of Animal Science and Technology, Zhejiang A&F University, 88 Huanchengbei Road, Lin'an, Zhejiang 311300, P. R. China
| | - Yongchun Yang
- College of Animal Science and Technology, Zhejiang A&F University, 88 Huanchengbei Road, Lin'an, Zhejiang 311300, P. R. China
| | - Weihuan Fang
- College of Animal Science and Technology, Zhejiang A&F University, 88 Huanchengbei Road, Lin'an, Zhejiang 311300, P. R. China.,Zhejiang University Institute of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Chun Fang
- Zhejiang University Institute of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Hang Wang
- College of Animal Science and Technology, Zhejiang A&F University, 88 Huanchengbei Road, Lin'an, Zhejiang 311300, P. R. China
| | - Menghua Yang
- College of Animal Science and Technology, Zhejiang A&F University, 88 Huanchengbei Road, Lin'an, Zhejiang 311300, P. R. China
| | - Lingli Jiang
- Zhoushan Entry-Exit Inspection and Quarantine Bureau, 555 Haijing Road, Zhoushan, Zhejiang 316000, P. R. China
| | - Xiangyang Zhou
- Zhoushan Entry-Exit Inspection and Quarantine Bureau, 555 Haijing Road, Zhoushan, Zhejiang 316000, P. R. China
| | - Houhui Song
- College of Animal Science and Technology, Zhejiang A&F University, 88 Huanchengbei Road, Lin'an, Zhejiang 311300, P. R. China
| |
Collapse
|
6
|
Mahapa A, Mandal S, Biswas A, Jana B, Polley S, Sau S, Sau K. Chemical and thermal unfolding of a global staphylococcal virulence regulator with a flexible C-terminal end. PLoS One 2015; 10:e0122168. [PMID: 25822635 PMCID: PMC4379015 DOI: 10.1371/journal.pone.0122168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/07/2015] [Indexed: 11/19/2022] Open
Abstract
SarA, a Staphylococcus aureus-specific dimeric protein, modulates the expression of numerous proteins including various virulence factors. Interestingly, S. aureus synthesizes multiple SarA paralogs seemingly for optimizing the expression of its virulence factors. To understand the domain structure/flexibility and the folding/unfolding mechanism of the SarA protein family, we have studied a recombinant SarA (designated rSarA) using various in vitro probes. Limited proteolysis of rSarA and the subsequent analysis of the resulting protein fragments suggested it to be a single-domain protein with a long, flexible C-terminal end. rSarA was unfolded by different mechanisms in the presence of different chemical and physical denaturants. While urea-induced unfolding of rSarA occurred successively via the formation of a dimeric and a monomeric intermediate, GdnCl-induced unfolding of this protein proceeded through the production of two dimeric intermediates. The surface hydrophobicity and the structures of the intermediates were not identical and also differed significantly from those of native rSarA. Of the intermediates, the GdnCl-generated intermediates not only possessed a molten globule-like structure but also exhibited resistance to dissociation during their unfolding. Compared to the native rSarA, the intermediate that was originated at lower GdnCl concentration carried a compact shape, whereas, other intermediates owned a swelled shape. The chemical-induced unfolding, unlike thermal unfolding of rSarA, was completely reversible in nature.
Collapse
Affiliation(s)
- Avisek Mahapa
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
| | - Sukhendu Mandal
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Anindya Biswas
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Biswanath Jana
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Soumitra Polley
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Subrata Sau
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
- * E-mail: (SS); (KS)
| | - Keya Sau
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
- * E-mail: (SS); (KS)
| |
Collapse
|