de Meneses FGA, Lima GD, Nunes M, Hugo Bastos V, Teixeira S. Percolation theory for the recognition of patterns in topographic images of the cortical activity.
Med Hypotheses 2019;
125:37-40. [PMID:
30902149 DOI:
10.1016/j.mehy.2019.02.021]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/23/2019] [Accepted: 02/03/2019] [Indexed: 11/24/2022]
Abstract
Electroencephalogram (EEG) is one of the mechanisms used to collect complex data. Its use includes evaluating neurological disorders, investigating brain function and correlations between EEG signals and real or imagined movements. The Topographic Image of Cortical Activity (TICA) records obtained by the EEG make it possible to observe, through color discrimination, the cortical areas that represent greater or lesser activity. Percolation Theory (PT) reveals properties on the aspects of fluid spreading from a central point, these properties being related to the aspects of the medium, topological characteristics and ease of penetration of a fluid in materials. The hypothesis presented so far considers that synaptic activities originate in points and spread from them, causing different areas of the brain to interact in a diffusive associative behavior, generating electric and magnetic fields by the currents that spread through the brain tissue and have an effect on the scalp sensors. Brain areas spatially separated create large-scale dynamic networks that are described by functional and effective connectivity. The proposition is that this phenomenon behaves like a fluidic spreading, so we can use the PT, through the topological analysis we detect specific signatures related to neural phenomena that manifest changes in the behavior of synaptic diffusion. This signature must be characterized by the Fractal Dimension (FD) values of the scattering clusters, these values will be used as properties in the k-Nearest Neighbors (kNN) method, an TICA will be categorized according to the degree of similarity to the preexisting patterns. In this context, our hypothesis will consolidate as a more computational resource in the service of medicine and another way that opens with the possibility of analysis and detailed inferences of the brain through TICA that go beyond a simply visual observation, as it happens in the present day.
Collapse