1
|
Bayón-Gil Á, Martinez-Picado J, Puertas MC. Viremic non-progression in HIV/SIV infection: A tied game between virus and host. Cell Rep Med 2025; 6:101921. [PMID: 39842407 DOI: 10.1016/j.xcrm.2024.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/16/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025]
Abstract
High-efficacy antiretroviral treatment (ART) has been a game-changer for HIV/AIDS pandemic, but incomplete CD4+ T cell recovery and persistent chronic immune activation still affect HIV-suppressed people. Exceptional cases of HIV infection that naturally exhibit delayed disease progression provide invaluable insights into protective biological mechanisms with potential clinical application. Viremic non-progressors (VNPs) represent an extremely rare population of individuals with HIV, characterized by preservation of the CD4+ T cell compartment despite persistent high levels of viral load (>10,000 copies/mL). While only a few studies have investigated the immunovirological characteristics of adult and pediatric VNPs, most of our knowledge about this phenotype stems from its non-human-primate counterpart, the natural simian immunodeficiency virus (SIV) hosts. In this review, we synthesize the insights gained from recent studies of natural SIV hosts and VNPs and evaluate the potential similarities and differences in the mechanisms that underlie the absence of pathogenesis, with special focus on the control of immune activation.
Collapse
Affiliation(s)
- Ángel Bayón-Gil
- IrsiCaixa Immunopathology Research Institute, Badalona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa Immunopathology Research Institute, Badalona, Spain; Germans Trias i Pujol Research Institute, Badalona, Spain; CIBERINFEC, Institute of Health Carlos III, Madrid, Spain; University of Vic-Central University of Catalonia, Vic, Spain; Catalan Institution for Research and Advanced Studies, Barcelona, Spain.
| | - Maria C Puertas
- IrsiCaixa Immunopathology Research Institute, Badalona, Spain; Germans Trias i Pujol Research Institute, Badalona, Spain; CIBERINFEC, Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Chinunga TT, Chahroudi A, Ribeiro SP. Pediatric immunotherapy and HIV control. Curr Opin HIV AIDS 2024; 19:201-211. [PMID: 38841850 PMCID: PMC11155294 DOI: 10.1097/coh.0000000000000857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
PURPOSE OF REVIEW Highlighting opportunities/potential for immunotherapy by understanding dynamics of HIV control during pediatric HIV infection with and without antiretroviral therapy (ART), as modeled in Simian immunodeficiency virus (SIV) and Simian-human immunodeficiency virus (SHIV)-infected rhesus macaques and observed in clinical trials. This review outlines mode of transmission, pathogenesis of pediatric HIV, unique aspects of the infant immune system, infant macaque models and immunotherapies. RECENT FINDINGS During the earliest stages of perinatal HIV infection, the infant immune system is characterized by a unique environment defined by immune tolerance and lack of HIV-specific T cell responses which contribute to disease progression. Moreover, primary lymphoid organs such as the thymus appear to play a distinct role in HIV pathogenesis in children living with HIV (CLWH). Key components of the immune system determine the degree of viral control, targets for strategies to induce viral control, and the response to immunotherapy. The pursuit of highly potent broadly neutralizing antibodies (bNAbs) and T cell vaccines has revolutionized the approach to HIV cure. Administration of HIV-1-specific bNAbs, targeting the highly variable envelope improves humoral immunity, and T cell vaccines induce or improve T cell responses such as the cytotoxic effects of HIV-1-specific CD8+ T cells, both of which are promising options towards virologic control and ART-free remission as evidenced by completed and ongoing clinical trials. SUMMARY Understanding early events during HIV infection and disease progression in CLWH serves as a foundation for predicting or targeting later outcomes by harnessing the immune system's natural responses. The developing pediatric immune system offers multiple opportunities for specific long-term immunotherapies capable of improving quality of life during adolescence and adulthood.
Collapse
Affiliation(s)
- Tehillah T. Chinunga
- Program in Immunology and Molecular Pathogenesis, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University
| | - Susan P. Ribeiro
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine
- Emory Vaccine Center
- Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Huygens A, Lecomte S, Tackoen M, Olislagers V, Delmarcelle Y, Burny W, Van Rysselberge M, Liesnard C, Larsen M, Appay V, Donner C, Marchant A. Functional Exhaustion Limits CD4+and CD8+T-Cell Responses to Congenital Cytomegalovirus Infection. J Infect Dis 2015; 212:484-94. [DOI: 10.1093/infdis/jiv071] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/27/2015] [Indexed: 11/13/2022] Open
|
4
|
Huygens A, Dauby N, Vermijlen D, Marchant A. Immunity to cytomegalovirus in early life. Front Immunol 2014; 5:552. [PMID: 25400639 PMCID: PMC4214201 DOI: 10.3389/fimmu.2014.00552] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/16/2014] [Indexed: 01/21/2023] Open
Abstract
Cytomegalovirus (CMV) is the most common congenital infection and is the leading non-genetic cause of neurological defects. CMV infection in early life is also associated with intense and prolonged viral excretion, indicating limited control of viral replication. This review summarizes our current understanding of the innate and adaptive immune responses to CMV infection during fetal life and infancy. It illustrates the fact that studies of congenital CMV infection have provided a proof of principle that the human fetus can develop anti-viral innate and adaptive immune responses, indicating that such responses should be inducible by vaccination in early life. The review also emphasizes the fact that our understanding of the mechanisms involved in symptomatic congenital CMV infection remains limited.
Collapse
Affiliation(s)
- Ariane Huygens
- Institute for Medical Immunology, Université Libre de Bruxelles , Charleroi , Belgium
| | - Nicolas Dauby
- Institute for Medical Immunology, Université Libre de Bruxelles , Charleroi , Belgium
| | - David Vermijlen
- Faculty of Pharmacy, Université Libre de Bruxelles , Brussels , Belgium
| | - Arnaud Marchant
- Institute for Medical Immunology, Université Libre de Bruxelles , Charleroi , Belgium
| |
Collapse
|
5
|
Gijsbers EF, van Nuenen AC, de la Peňa AT, Bowles EJ, Stewart-Jones GB, Schuitemaker H, Kootstra NA. Low level of HIV-1 evolution after transmission from mother to child. Sci Rep 2014; 4:5079. [PMID: 24866155 PMCID: PMC5381489 DOI: 10.1038/srep05079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/06/2014] [Indexed: 02/06/2023] Open
Abstract
Mother-to-child HIV-1 transmission pairs represent a good opportunity to study the dynamics of CTL escape and reversion after transmission in the light of shared and non-shared HLA-alleles. Mothers share half of their HLA alleles with their children, while the other half is inherited from the father and is generally discordant between mother and child. This implies that HIV-1 transmitted from mother to child enters a host environment to which it has already partially adapted. Here, we studied viral evolution and the dynamics of CTL escape mutations and reversion of these mutations after transmission in the context of shared and non-shared HLA alleles in viral variants obtained from five mother-to-child transmission pairs. Only limited HIV-1 evolution was observed in the children after mother-to-child transmission. Viral evolution was mainly driven by forward mutations located inside CTL epitopes restricted by HLA alleles inherited from the father, which may be indicative of CTL pressure.
Collapse
Affiliation(s)
- Esther F Gijsbers
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ad C van Nuenen
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Alba Torrents de la Peňa
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Emma J Bowles
- Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Guillaume B Stewart-Jones
- Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Hanneke Schuitemaker
- 1] Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands [2]
| | - Neeltje A Kootstra
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Poonia B, Pauza CD. Levels of CD56+TIM-3- effector CD8 T cells distinguish HIV natural virus suppressors from patients receiving antiretroviral therapy. PLoS One 2014; 9:e88884. [PMID: 24520422 PMCID: PMC3919829 DOI: 10.1371/journal.pone.0088884] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/17/2014] [Indexed: 11/25/2022] Open
Abstract
Prolonged antiretroviral therapy (ART) with effective HIV suppression and reconstitution of CD4 T cells, fails to restore CD8 T cell lytic effector function that is needed to eradicate the viral reservoir. Better understanding of the phenotype and function of circulating CD8 cells in HIV patients will contribute to new targeted therapies directed at increasing CD8 T cell lytic effector function and destruction of the viral reservoir. We show that CD8 T cells from ART treated patients had sharply reduced expression of CD56 (neural cell adhesion molecule-1), a marker associated with cytolytic function whereas elite patients who control HIV in the absence of ART had CD56+ CD8 T cell levels similar to uninfected controls. The CD56+ CD8 T cells had higher perforin upregulation as well as degranulation following stimulation with HIV gag peptides compared with CD56 negative CD8 T cells. Elite patients had the highest frequencies of perforin producing CD56+ CD8 T cells among all HIV+ groups. In patients receiving ART we noted high levels of the exhaustion marker TIM-3 on CD56+ CD8 T cells, implying that defective effector function was related to immune exhaustion. CD56+ CD8 T cells from elite or treated HIV patients responded to PMA plus ionomycin stimulation, and expressed transcription factors T-bet and EOMES at levels similar to uninfected controls. Consequently, the lytic effector defect in chronic HIV disease is due to immune exhaustion and quantitative loss of CD56+ CD8 T cells and this defect is not repaired in patients where viremia is suppressed and CD4 T cells are recovered after ART. Reconstituting the cytotoxic CD56+ subset of CD8+ T cells through new interventions might improve the lytic effector capacity and contribute to reducing the viral reservoir. Our initial studies indicate that IL-15 treatment partly reverses the CD56 defect, implying that myeloid cell defects could be targeted for immune therapy during chronic HIV disease.
Collapse
Affiliation(s)
- Bhawna Poonia
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
- * E-mail:
| | - C. David Pauza
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| |
Collapse
|
7
|
Phenotypic characterization of HIV-specific CD8+ T cells during early and chronic infant HIV-1 infection. PLoS One 2011; 6:e20375. [PMID: 21655252 PMCID: PMC3105047 DOI: 10.1371/journal.pone.0020375] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 04/19/2011] [Indexed: 12/26/2022] Open
Abstract
Although CD8(+) T cells play an important role in the containment of adult HIV-1 replication, their role in infant HIV-1 infection is not as well understood. Impaired HIV-specific CD8(+) T cell responses may underlie the persistently high viral loads observed in infants. We examined the frequency and phenotype of infant HIV-specific CD8(+) T cells in 7 HIV-infected antiretroviral therapy-naïve infants during the first 2 years of life, using class I HLA tetramers and IFN-γ-ELISPOT. The frequency (0.088-3.9% of CD3(+)CD8(+) cells) and phenotype (CD27(+)CD28(-), CD45RA(+/-), CD57(+/-), HLA-DR(+), CD95(+)) of infant HIV-specific CD8(+) T cells were similar to reports in adults undergoing early infection. Unlike adults, at 23-24 months post-infection a high frequency of HIV-specific CD8(+) T cells expressed HLA-DR (mean 80%, range 68-85%) and CD95 (mean 88%, range 79-96%), suggesting sustained activation and vulnerability to apoptosis. Despite comparable expansion of HIV-specific CD8(+) T cells of a similar phenotype to adults during early infection, infant T cells failed to contain HIV-1 replication, and remained persistently activated and vulnerable to apoptosis during chronic infection.
Collapse
|
8
|
Fogle JE, Mexas AM, Tompkins WA, Tompkins MB. CD4(+)CD25(+) T regulatory cells inhibit CD8(+) IFN-gamma production during acute and chronic FIV infection utilizing a membrane TGF-beta-dependent mechanism. AIDS Res Hum Retroviruses 2010; 26:201-16. [PMID: 20156102 DOI: 10.1089/aid.2009.0162] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
CD8(+) lymphocytes are critical to the control and elimination of viral pathogens. Impaired CD8(+) responses are well recognized in lentiviral infections; however, the mechanisms underlying CD8(+) impairment remain elusive. Using the feline immunodeficiency virus (FIV) model for human AIDS, we reported previously that CD4(+)CD25(+) Treg cells in both the acute and long-term, asymptomatic phase of infection are constitutively activated and suppress CD4(+)CD25(-) T cell responses. In the current study, we have demonstrated that CD4(+)CD25(+) Treg cells suppress CD8(+) responses to immune stimulation during both the acute and chronic, asymptomatic phase of FIV infection and that the mechanism of suppression may be mediated by membrane-associated TGF-beta (mTGF-beta) on CD4(+)CD25(+) lymphocytes. Depletion of CD4(+)CD25(+) lymphocytes from lymph node suspensions significantly enhanced production of IFN-gamma during the acute phase of infection and coculture of CD8(+) lymphocytes with CD4(+)CD25(+) lymphocytes resulted in suppression of CD8(+) IFN-gamma during both the acute and chronic stages of infection. FACS analysis indicated that there was TGF-betaRII upregulation on CD8(+) cells from FIV(+) cats during the acute and chronic stage of infection. In addition, there was upregulation of mTGF-beta on the CD4(+)CD25(+) subset in chronically infected cats. In support of activation of the TGF-beta signaling pathway, Western blotting showed Smad 2 phosphorylation in CD8(+) targets following CD4(+)CD25(+)/CD8(+) coculture. These results demonstrate the suppressive effect CD4(+)CD25(+) Treg cells have on the CD8(+) immune response during the acute and chronic stages of FIV infection and suggest that the mechanism of suppression may be mediated by mTGF-beta.
Collapse
Affiliation(s)
- Jonathan E. Fogle
- Immunology Program, Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina 27606
| | - Angela M. Mexas
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Wayne A. Tompkins
- Immunology Program, Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina 27606
| | - Mary B. Tompkins
- Immunology Program, Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina 27606
| |
Collapse
|
9
|
Co MDT, Kilpatrick ED, Rothman AL. Dynamics of the CD8 T-cell response following yellow fever virus 17D immunization. Immunology 2009; 128:e718-27. [PMID: 19740333 DOI: 10.1111/j.1365-2567.2009.03070.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Management of yellow fever is focused on the prevention of illness by the use of the yellow fever virus (YFV) 17D vaccine. The role of neutralizing antibodies in protection is generally accepted with YFV-specific T cells likely contributing to the control of viral replication. We studied CD8(+) T-cell responses to four defined human leucocyte antigen-B35-restricted epitopes in YFV vaccine recipients as a model of the kinetics of cytotoxic T-lymphocyte responses to an acute human viral infection. Multiple features of these epitope-specific responses were analysed after vaccination including magnitude, cytokine production, phenotype and T-cell receptor repertoire. Peak peptide-specific interferon-gamma (IFN-gamma) responses of almost 1% of CD8(+) T cells were seen as early as 2 weeks post-vaccination; however, dominant responses varied between donors. Peptide-specific responses were still detectable at 54 months post-vaccination. Tetramer-positive cells, at high frequencies, were detected as early as 7-9 days, before detectable IFN-gamma-producing cells, suggesting a defect in the functional capacity of some antigen-specific cells early post-vaccination. The predominant memory phenotype of the tetramer-positive population was a differentiated effector (CD45RA(+) CCR7(-) CD62L(-)) phenotype. The T-cell receptor Vbeta analysis revealed a diverse oligoclonal repertoire in tetramer-positive T-cell populations in two individuals. These characteristics of the YFV-specific T-cell response could contribute to vaccine effectiveness.
Collapse
Affiliation(s)
- Mary Dawn T Co
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | |
Collapse
|
10
|
Rutjens E, Vermeulen J, Verstrepen B, Hofman S, Prins JM, Srivastava I, Heeney JL, Koopman G. Chimpanzee CD4+ T cells are relatively insensitive to HIV-1 envelope-mediated inhibition of CD154 up-regulation. Eur J Immunol 2008; 38:1164-72. [PMID: 18383039 DOI: 10.1002/eji.200737792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
CD40-CD154 interaction forms a key event in regulation of crosstalk between dendritic cells and CD4 T cells. In human immunodeficiency virus (HIV)-1 infected patients CD154 expression is impaired, and the resulting loss of immune responsiveness by CD4+ T cells contributes to a progressive state of immunodeficiency in humans. Although chimpanzees are susceptible to chronic HIV-1/SIVcpz infection, they are relatively resistant to the onset of AIDS. This relative resistance is characterized by maintenance of CD4+ T cell populations and function, which is highly compromised in human patients. In our cohort of chronically HIV-1- and SIVcpz-infected chimpanzees, we demonstrated the capacity to produce IL-2, following CD3/CD28 stimulation, as well as preserved CD154 up-regulation. Cross-linking of CD4 with mAb was found to inhibit CD3/CD28-induced up-regulation of CD154 equally in chimpanzees and humans. However, specific cross-linking with trimeric recombinant HIV-1 gp140 revealed reduced sensitivity for inhibition of CD154 up-regulation in chimpanzees, requiring fourfold higher concentrations of viral protein. Chimpanzee CD4+ T cells are thus less sensitive to the immune-suppressive effect of low-dose HIV-1 envelope protein than human CD4+ T cells.
Collapse
Affiliation(s)
- Erik Rutjens
- Biomedical Primate Research Centre, Department of Virology, Rijswijk, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
11
|
A Quantitative Assay for Epstein-Barr Virus–Specific Immunity Shows Interferon-γ Producing CD8+ T Cells Increase During Immunosuppression Reduction to Treat Posttransplant Lymphoproliferative Disease. Transplantation 2007; 84:1534-9. [DOI: 10.1097/01.tp.0000290232.65830.e7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Characteristics of HIV-1-specific CD8 T-cell responses and their role in loss of viremia in children chronically infected with HIV-1 undergoing highly active antiretroviral therapy. Chin Med J (Engl) 2006. [DOI: 10.1097/00029330-200612010-00003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
13
|
Abstract
Vertical exposure to HIV occurs at a time when functional capacity of the infant's immune system is attenuated through immaturity. Immune response capability is rooted in host genetic makeup, and the broad and fine specificity of innate and adaptive immune responses, respectively, shape the outcomes of HIV encounter in some instances and imprint viral changes through selective immune pressure in others. Findings from recent studies have profound implications for understanding immune pathogenesis of pediatric HIV infection and, in particular, highlight the importance of host genetics of both mother and child in determining whether an exposed child acquires HIV infection or not and, if infected, the rate of disease progression. This review focuses on the key host molecules, the CC chemokine CCL3 and HLA, which have taken center stage in these new developments.
Collapse
Affiliation(s)
- CAROLINE T. TIEMESSEN
- C.T. Tiemessen, AIDS Virus Research Unit, National Institute for Communicable Diseases and University of the Witwatersand, Private Bag X4, Sandringham, 2131, South Africa. Phone: (+27-11) 386-6366/6400; Fax: (+27-11) 386-6465 E-mail:
| | - LOUISE KUHN
- L. Kuhn, Gertrude H. Sergievsky Centre, College of Physicians and Surgeons; and Department of Epidemiology, Mailman School of Public Health, Columbia University, 630 West 168 Street, New York, NY 10032. Phone: (212) 305-2398; Fax: (212) 305-2426 E-mail;
| |
Collapse
|
14
|
Pillay T, Zhang HT, Drijfhout JW, Robinson N, Brown H, Khan M, Moodley J, Adhikari M, Pfafferott K, Feeney ME, St John A, Holmes EC, Coovadia HM, Klenerman P, Goulder PJR, Phillips RE. Unique acquisition of cytotoxic T-lymphocyte escape mutants in infant human immunodeficiency virus type 1 infection. J Virol 2005; 79:12100-5. [PMID: 16140787 PMCID: PMC1212591 DOI: 10.1128/jvi.79.18.12100-12105.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of cytotoxic T-lymphocyte (CTL) escape in rapidly progressive infant human immunodeficiency virus type 1 (HIV-1) infection is undefined. The data presented here demonstrate that infant HIV-1-specific CTL can select for viral escape variants very early in life. These variants, furthermore, may be selected specifically in the infant, despite the same CTL specificity being present in the mother. Additionally, pediatric CTL activity may be compromised both by the transmission of maternal escape variants and by mother-to-child transmission of escape variants that originally arose in the father. The unique acquisition of these CTL escape forms may help to explain the severe nature of some pediatric HIV infections.
Collapse
Affiliation(s)
- Thillagavathie Pillay
- The Peter Medawar Building for Pathogen Research and Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|