1
|
Erman B, Aba U, Ipsir C, Pehlivan D, Aytekin C, Cildir G, Cicek B, Bozkurt C, Tekeoglu S, Kaya M, Aydogmus C, Cipe F, Sucak G, Eltan SB, Ozen A, Barıs S, Karakoc-Aydiner E, Kıykım A, Karaatmaca B, Kose H, Uygun DFK, Celmeli F, Arikoglu T, Ozcan D, Keskin O, Arık E, Aytekin ES, Cesur M, Kucukosmanoglu E, Kılıc M, Yuksek M, Bıcakcı Z, Esenboga S, Ayvaz DÇ, Sefer AP, Guner SN, Keles S, Reisli I, Musabak U, Demirbas ND, Haskologlu S, Kilic SS, Metin A, Dogu F, Ikinciogulları A, Tezcan I. Genetic Evaluation of the Patients with Clinically Diagnosed Inborn Errors of Immunity by Whole Exome Sequencing: Results from a Specialized Research Center for Immunodeficiency in Türkiye. J Clin Immunol 2024; 44:157. [PMID: 38954121 PMCID: PMC11219406 DOI: 10.1007/s10875-024-01759-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
Molecular diagnosis of inborn errors of immunity (IEI) plays a critical role in determining patients' long-term prognosis, treatment options, and genetic counseling. Over the past decade, the broader utilization of next-generation sequencing (NGS) techniques in both research and clinical settings has facilitated the evaluation of a significant proportion of patients for gene variants associated with IEI. In addition to its role in diagnosing known gene defects, the application of high-throughput techniques such as targeted, exome, and genome sequencing has led to the identification of novel disease-causing genes. However, the results obtained from these different methods can vary depending on disease phenotypes or patient characteristics. In this study, we conducted whole-exome sequencing (WES) in a sizable cohort of IEI patients, consisting of 303 individuals from 21 different clinical immunology centers in Türkiye. Our analysis resulted in likely genetic diagnoses for 41.1% of the patients (122 out of 297), revealing 52 novel variants and uncovering potential new IEI genes in six patients. The significance of understanding outcomes across various IEI cohorts cannot be overstated, and we believe that our findings will make a valuable contribution to the existing literature and foster collaborative research between clinicians and basic science researchers.
Collapse
Affiliation(s)
- Baran Erman
- Institute of Child Health, Hacettepe University, Ankara, Turkey.
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey.
| | - Umran Aba
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Canberk Ipsir
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Damla Pehlivan
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Caner Aytekin
- Pediatric Immunology, SBU Ankara Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Gökhan Cildir
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5000, Australia
| | - Begum Cicek
- Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Ceren Bozkurt
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Sidem Tekeoglu
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Melisa Kaya
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Cigdem Aydogmus
- Department of Pediatric Allergy and Clinical Immunology, University of Health Sciences, Istanbul Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Funda Cipe
- Department of Pediatric Allergy and Clinical Immunology, Altinbas University School of Medicine, Istanbul, Turkey
| | - Gulsan Sucak
- Medical Park Bahçeşehir Hospital, Clinic of Hematology and Transplantation, İstanbul, Turkey
| | - Sevgi Bilgic Eltan
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ahmet Ozen
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Safa Barıs
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ayca Kıykım
- Pediatric Allergy and Immunology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Betul Karaatmaca
- Department of Pediatric Allergy and Immunology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Hulya Kose
- Department of Pediatric Immunology, Diyarbakir Children Hospital, Diyarbakır, Turkey
| | - Dilara Fatma Kocacık Uygun
- Division of Allergy Immunology, Department of Pediatrics, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Fatih Celmeli
- Republic of Turkey Ministry of Health Antalya Training and Research Hospital Pediatric Immunology and Allergy Diseases, Antalya, Turkey
| | - Tugba Arikoglu
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Dilek Ozcan
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Balcali Hospital, Cukurova University, Adana, Turkey
| | - Ozlem Keskin
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Elif Arık
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Elif Soyak Aytekin
- Department of Pediatric Allergy and Immunology, Etlik City Hospital, Ankara, Turkey
| | - Mahmut Cesur
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ercan Kucukosmanoglu
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Mehmet Kılıc
- Division of Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, University of Firat, Elazığ, Turkey
| | - Mutlu Yuksek
- Department of Pediatric Immunology and Allergy, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Zafer Bıcakcı
- Department of Pediatric Hematology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Saliha Esenboga
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Deniz Çagdaş Ayvaz
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University School of Medicine, Ankara, Turkey
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Asena Pınar Sefer
- Department of Pediatric Allergy and Immunology, Şanlıurfa Training and Research Hospital, Şanlıurfa, Turkey
| | - Sukrü Nail Guner
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Sevgi Keles
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Ismail Reisli
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Ugur Musabak
- Department of Immunology and Allergy, Baskent University School of Medicine, Ankara, Turkey
| | - Nazlı Deveci Demirbas
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Sule Haskologlu
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Sara Sebnem Kilic
- Division of Pediatric Immunology-Rheumatology, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
- Translational Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ayse Metin
- Department of Pediatric Allergy and Immunology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Figen Dogu
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Aydan Ikinciogulları
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Ilhan Tezcan
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
2
|
Ohishi Y, Ammann S, Ziaee V, Strege K, Groß M, Amos CV, Shahrooei M, Ashournia P, Razaghian A, Griffiths GM, Ehl S, Fukuda M, Parvaneh N. Griscelli Syndrome Type 2 Sine Albinism: Unraveling Differential RAB27A Effector Engagement. Front Immunol 2020; 11:612977. [PMID: 33362801 PMCID: PMC7758216 DOI: 10.3389/fimmu.2020.612977] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/03/2020] [Indexed: 12/30/2022] Open
Abstract
Griscelli syndrome type 2 (GS-2) is an inborn error of immunity characterized by partial albinism and episodes of hemophagocytic lymphohistiocytosis (HLH). It is caused by RAB27A mutations that encode RAB27A, a member of the Rab GTPase family. RAB27A is expressed in many tissues and regulates vesicular transport and organelle dynamics. Occasionally, GS-2 patients with RAB27A mutation display normal pigmentation. The study of such variants provides the opportunity to map distinct binding sites for tissue-specific effectors on RAB27A. Here we present a new case of GS-2 without albinism (GS-2 sine albinism) caused by a novel missense mutation (Val143Ala) in the RAB27A and characterize its functional cellular consequences. Using pertinent animal cell lines, the Val143Ala mutation impairs both the RAB27A–SLP2-A interaction and RAB27A–MUNC13-4 interaction, but it does not affect the RAB27A–melanophilin (MLPH)/SLAC2-A interaction that is crucial for skin and hair pigmentation. We conclude that disruption of the RAB27A–MUNC13-4 interaction in cytotoxic lymphocytes leads to the HLH predisposition of the GS-2 patient with the Val143Ala mutation. Finally, we include a review of GS-2 sine albinism cases reported in the literature, summarizing their genetic and clinical characteristics.
Collapse
Affiliation(s)
- Yuta Ohishi
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Sandra Ammann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany.,Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Vahid Ziaee
- Department of Pediatrics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Katharina Strege
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Miriam Groß
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Carla Vazquez Amos
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Mohammad Shahrooei
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Parisa Ashournia
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Anahita Razaghian
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Nima Parvaneh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Research Center for Immunodeficiencies, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
3
|
Al-Sulaiman R, Othman A, El-Akouri K, Fareed S, AlMulla H, Sukik A, Al-Mureikhi M, Shahbeck N, Ali R, Al-Mesaifri F, Musa S, Al-Mulla M, Ibrahim K, Mohamed K, Al-Nesef MA, Ehlayel M, Ben-Omran T. A founder RAB27A variant causes Griscelli syndrome type 2 with phenotypic heterogeneity in Qatari families. Am J Med Genet A 2020; 182:2570-2580. [PMID: 32856792 DOI: 10.1002/ajmg.a.61829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
Griscelli syndrome type 2 (GS2) is a rare autosomal recessive disorder caused by pathogenic variants in the RAB27A gene and characterized by partial albinism, immunodeficiency, and occasional hematological and neurological involvement. We reviewed and analyzed the medical records of 12 individuals with GS2 from six families belonging to a highly consanguineous Qatari tribe and with a recurrent pathogenic variant in the RAB27A gene (NM_004580.4: c.244C > T, p.Arg82Cys). Detailed demographic, clinical, and molecular data were collected. Cutaneous manifestations were the most common presentation (42%), followed by neurological abnormalities (33%) and immunodeficiency (25%). The most severe manifestation was HLH (33%). Among the 12 patients, three patients (25%) underwent HSCT, and four (33%) died. The cause of death in all four patients was deemed HLH, providing evidence for this complication's fatal nature. Interestingly, two affected patients (16%) were asymptomatic. This report highlights the broad spectrum of clinical presentations of GS2 associated with a founder variant in the RAB27A gene (c.244C > T, p.Arg82Cys). Early suspicion of GS2 among Qatari patients with cutaneous manifestations, neurological findings, immunodeficiency, and HLH would shorten the diagnostic odyssey, guide early and appropriate treatment, and prevent fatal outcomes.
Collapse
Affiliation(s)
- Reem Al-Sulaiman
- Department of Medical Genetics, Hamad Medical Corporation, Doha, Qatar.,Department of Adult Hematology/Oncology, Hamad Medical Corporation, Doha, Qatar
| | - Amna Othman
- Department of Medical Genetics, Hamad Medical Corporation, Doha, Qatar.,Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
| | - Karen El-Akouri
- Department of Medical Genetics, Hamad Medical Corporation, Doha, Qatar.,Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
| | - Shehab Fareed
- Department of Adult Hematology/Oncology, Hamad Medical Corporation, Doha, Qatar
| | - Hajer AlMulla
- Department of Medical Genetics, Hamad Medical Corporation, Doha, Qatar.,Department of Adult Hematology/Oncology, Hamad Medical Corporation, Doha, Qatar
| | - Aseel Sukik
- Department of Internal Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Mariam Al-Mureikhi
- Department of Medical Genetics, Hamad Medical Corporation, Doha, Qatar.,Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
| | - Noora Shahbeck
- Department of Medical Genetics, Hamad Medical Corporation, Doha, Qatar.,Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
| | - Rehab Ali
- Department of Medical Genetics, Hamad Medical Corporation, Doha, Qatar.,Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
| | - Fatma Al-Mesaifri
- Department of Medical Genetics, Hamad Medical Corporation, Doha, Qatar.,Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
| | - Sara Musa
- Department of Medical Genetics, Hamad Medical Corporation, Doha, Qatar
| | - Mariam Al-Mulla
- Department of Medical Genetics, Hamad Medical Corporation, Doha, Qatar.,Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
| | - Khalid Ibrahim
- Division of Pediatric Neurology, Sidra Medicine, Doha, Qatar
| | - Khalid Mohamed
- Division of Pediatric Neurology, Sidra Medicine, Doha, Qatar
| | | | - Mohammad Ehlayel
- Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar.,Weill Cornell Medical College, Doha, Qatar
| | - Tawfeg Ben-Omran
- Department of Medical Genetics, Hamad Medical Corporation, Doha, Qatar.,Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar.,Weill Cornell Medical College, Doha, Qatar
| |
Collapse
|
4
|
Almalki H, Baothman A, Mehdawi F, Goronfolah L. RAB27A mutation in a patient with griscelli syndrome type 2, successfully cured by hematopoietic stem cell transplantation: Sustained remission. JOURNAL OF APPLIED HEMATOLOGY 2019. [DOI: 10.4103/joah.joah_34_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
5
|
Abolhassani H, Kiaee F, Tavakol M, Chavoshzadeh Z, Mahdaviani SA, Momen T, Yazdani R, Azizi G, Habibi S, Gharagozlou M, Movahedi M, Hamidieh AA, Behniafard N, Nabavi M, Bemanian MH, Arshi S, Molatefi R, Sherkat R, Shirkani A, Amin R, Aleyasin S, Faridhosseini R, Jabbari-Azad F, Mohammadzadeh I, Ghaffari J, Shafiei A, Kalantari A, Mansouri M, Mesdaghi M, Babaie D, Ahanchian H, Khoshkhui M, Soheili H, Eslamian MH, Cheraghi T, Dabbaghzadeh A, Tavassoli M, Kalmarzi RN, Mortazavi SH, Kashef S, Esmaeilzadeh H, Tafaroji J, Khalili A, Zandieh F, Sadeghi-Shabestari M, Darougar S, Behmanesh F, Akbari H, Zandkarimi M, Abolnezhadian F, Fayezi A, Moghtaderi M, Ahmadiafshar A, Shakerian B, Sajedi V, Taghvaei B, Safari M, Heidarzadeh M, Ghalebaghi B, Fathi SM, Darabi B, Bazregari S, Bazargan N, Fallahpour M, Khayatzadeh A, Javahertrash N, Bashardoust B, Zamani M, Mohsenzadeh A, Ebrahimi S, Sharafian S, Vosughimotlagh A, Tafakoridelbari M, Rahimi M, Ashournia P, Razaghian A, Rezaei A, Mamishi S, Parvaneh N, Rezaei N, Hammarström L, Aghamohammadi A. Fourth Update on the Iranian National Registry of Primary Immunodeficiencies: Integration of Molecular Diagnosis. J Clin Immunol 2018; 38:816-832. [PMID: 30302726 DOI: 10.1007/s10875-018-0556-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/26/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND The number of inherited diseases and the spectrum of clinical manifestations of primary immunodeficiency disorders (PIDs) are ever-expanding. Molecular diagnosis using genomic approaches should be performed for all PID patients since it provides a resource to improve the management and to estimate the prognosis of patients with these rare immune disorders. METHOD The current update of Iranian PID registry (IPIDR) contains the clinical phenotype of newly registered patients during last 5 years (2013-2018) and the result of molecular diagnosis in patients enrolled for targeted and next-generation sequencing. RESULTS Considering the newly diagnosed patients (n = 1395), the total number of registered PID patients reached 3056 (1852 male and 1204 female) from 31 medical centers. The predominantly antibody deficiency was the most common subcategory of PID (29.5%). The putative causative genetic defect was identified in 1014 patients (33.1%) and an autosomal recessive pattern was found in 79.3% of these patients. Among the genetically different categories of PID patients, the diagnostic rate was highest in defects in immune dysregulation and lowest in predominantly antibody deficiencies and mutations in the MEFV gene were the most frequent genetic disorder in our cohort. CONCLUSIONS During a 20-year registration of Iranian PID patients, significant changes have been observed by increasing the awareness of the medical community, national PID network establishment, improving therapeutic facilities, and recently by inclusion of the molecular diagnosis. The current collective study of PID phenotypes and genotypes provides a major source for ethnic surveillance, newborn screening, and genetic consultation for prenatal and preimplantation genetic diagnosis.
Collapse
Affiliation(s)
- Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Iranian Primary Immunodeficiencies Network (IPIN), Tehran University of Medical Science, Tehran, Iran
| | - Fatemeh Kiaee
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Iranian Primary Immunodeficiencies Network (IPIN), Tehran University of Medical Science, Tehran, Iran
| | - Marzieh Tavakol
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Zahra Chavoshzadeh
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tooba Momen
- Department of Allergy and Clinical Immunology, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Iranian Primary Immunodeficiencies Network (IPIN), Tehran University of Medical Science, Tehran, Iran
| | - Gholamreza Azizi
- Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Sima Habibi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Iranian Primary Immunodeficiencies Network (IPIN), Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Gharagozlou
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellence, Children's Medical Center, Tehran, University of Medical Sciences, Tehran, Iran
| | - Masoud Movahedi
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellence, Children's Medical Center, Tehran, University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Hematology, Oncology and Stem Cell Transplantation Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Behniafard
- Department of Allergy and Clinical Immunology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammamd Nabavi
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Bemanian
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Arshi
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Rasol Molatefi
- Department of Pediatrics, Bo-Ali children's Hospital of Ardabil University of Medical Sciences, Ardabil, Iran
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, lsfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Shirkani
- Allergy and Clinical Immunology Department, Bushehr University of Medical Science, School of Medicine, Bushehr, Iran
| | - Reza Amin
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheila Aleyasin
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Faridhosseini
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Iraj Mohammadzadeh
- Noncommunicable Pediatric Diseases Research Center, Amirkola Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Javad Ghaffari
- Department of Pediatrics, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Shafiei
- Department of Immunology, Bahrami Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Kalantari
- Department of Immunology and Allergy, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Mansouri
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mehrnaz Mesdaghi
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Delara Babaie
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Ahanchian
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Khoshkhui
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Habib Soheili
- Department of Pediatrics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | | | - Taher Cheraghi
- Department of Pediatrics, 17th Shahrivar Children's Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Abbas Dabbaghzadeh
- Noncommunicable Pediatric Diseases Research Center, Amirkola Hospital, Babol University of Medical Sciences, Babol, Iran.,Department of Allergy and Clinical Immunology, Pediatric Infectious Diseases Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahmoud Tavassoli
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Nasiri Kalmarzi
- Cellular & Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - Sara Kashef
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Javad Tafaroji
- Department of Pediatrics, Qom University of Medical Sciences, Qom, Iran
| | - Abbas Khalili
- Department of Pediatrics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fariborz Zandieh
- Department of Immunology, Bahrami Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sepideh Darougar
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Behmanesh
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hedayat Akbari
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Farhad Abolnezhadian
- Department of Immunology and Allergy, Ahvaz University of Medical Sciences, Ahvaz, Iran
| | - Abbas Fayezi
- Department of Immunology and Allergy, Ahvaz University of Medical Sciences, Ahvaz, Iran
| | - Mojgan Moghtaderi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Behzad Shakerian
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vahid Sajedi
- Department of Immunology and Allergy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Behrang Taghvaei
- Department of Immunology and Allergy, Semnan University of Medical Sciences, Semnan, Iran
| | - Mojgan Safari
- Department of Pediatrics, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marzieh Heidarzadeh
- Department of Immunology and Allergy, Kashan University of Medical Sciences, Kashan, Iran
| | - Babak Ghalebaghi
- Department of Pediatrics, 17th Shahrivar Children's Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyed Mohammad Fathi
- Department of Immunology and Allergy, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Behzad Darabi
- Department of Immunology and Allergy, Ilam University of Medical Sciences, Ilam, Iran
| | - Saeed Bazregari
- Allergy and Clinical Immunology Department, Bushehr University of Medical Science, School of Medicine, Bushehr, Iran
| | - Nasrin Bazargan
- Department of Immunology and Allergy, Kerman University of Medical Sciences, Kerman, Iran
| | - Morteza Fallahpour
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Khayatzadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Javahertrash
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Bahram Bashardoust
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadali Zamani
- Department of Immunology and Allergy, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Azam Mohsenzadeh
- Department of Pediatrics, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sarehsadat Ebrahimi
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellence, Children's Medical Center, Tehran, University of Medical Sciences, Tehran, Iran
| | - Samin Sharafian
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellence, Children's Medical Center, Tehran, University of Medical Sciences, Tehran, Iran
| | - Ahmad Vosughimotlagh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellence, Children's Medical Center, Tehran, University of Medical Sciences, Tehran, Iran
| | - Mitra Tafakoridelbari
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellence, Children's Medical Center, Tehran, University of Medical Sciences, Tehran, Iran
| | - Maziar Rahimi
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellence, Children's Medical Center, Tehran, University of Medical Sciences, Tehran, Iran
| | - Parisa Ashournia
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellence, Children's Medical Center, Tehran, University of Medical Sciences, Tehran, Iran
| | - Anahita Razaghian
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellence, Children's Medical Center, Tehran, University of Medical Sciences, Tehran, Iran
| | - Arezou Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Iranian Primary Immunodeficiencies Network (IPIN), Tehran University of Medical Science, Tehran, Iran
| | - Setareh Mamishi
- Pediatric Infectious Diseases Research Center, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Nima Parvaneh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Iranian Primary Immunodeficiencies Network (IPIN), Tehran University of Medical Science, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Iranian Primary Immunodeficiencies Network (IPIN), Tehran University of Medical Science, Tehran, Iran
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran. .,Iranian Primary Immunodeficiencies Network (IPIN), Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
6
|
Yeetong P, Suphapeetiporn K, Shotelersuk V. Mutation analysis and prenatal diagnosis of a family with Griscelli syndrome type 2: two novel mutations in the RAB27A gene. World J Pediatr 2017; 13:392-394. [PMID: 28484936 DOI: 10.1007/s12519-017-0037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Patra Yeetong
- Division of Human Genetics, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kanya Suphapeetiporn
- Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand.
- Center of Excellence for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Vorasuk Shotelersuk
- Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
7
|
Tesi B, Lagerstedt-Robinson K, Chiang SCC, Ben Bdira E, Abboud M, Belen B, Devecioglu O, Fadoo Z, Yeoh AEJ, Erichsen HC, Möttönen M, Akar HH, Hästbacka J, Kaya Z, Nunes S, Patiroglu T, Sabel M, Saribeyoglu ET, Tvedt TH, Unal E, Unal S, Unuvar A, Meeths M, Henter JI, Nordenskjöld M, Bryceson YT. Targeted high-throughput sequencing for genetic diagnostics of hemophagocytic lymphohistiocytosis. Genome Med 2015; 7:130. [PMID: 26684649 PMCID: PMC4684627 DOI: 10.1186/s13073-015-0244-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/11/2015] [Indexed: 01/06/2023] Open
Abstract
Background Hemophagocytic lymphohistiocytosis (HLH) is a rapid-onset, potentially fatal hyperinflammatory syndrome. A prompt molecular diagnosis is crucial for appropriate clinical management. Here, we validated and prospectively evaluated a targeted high-throughput sequencing approach for HLH diagnostics. Methods A high-throughput sequencing strategy of 12 genes linked to HLH was validated in 13 patients with previously identified HLH-associated mutations and prospectively evaluated in 58 HLH patients. Moreover, 2504 healthy individuals from the 1000 Genomes project were analyzed in silico for variants in the same genes. Results Analyses revealed a mutation detection sensitivity of 97.3 %, an average coverage per gene of 98.0 %, and adequate coverage over 98.6 % of sites previously reported as mutated in these genes. In the prospective cohort, we achieved a diagnosis in 22 out of 58 patients (38 %). Genetically undiagnosed HLH patients had a later age at onset and manifested higher frequencies of known secondary HLH triggers. Rare, putatively pathogenic monoallelic variants were identified in nine patients. However, such monoallelic variants were not enriched compared with healthy individuals. Conclusions We have established a comprehensive high-throughput platform for genetic screening of patients with HLH. Almost all cases with reduced natural killer cell function received a diagnosis, but the majority of the prospective cases remain genetically unexplained, highlighting genetic heterogeneity and environmental impact within HLH. Moreover, in silico analyses of the genetic variation affecting HLH-related genes in the general population suggest caution with respect to interpreting causality between monoallelic mutations and HLH. A complete understanding of the genetic susceptibility to HLH thus requires further in-depth investigations, including genome sequencing and detailed immunological characterization. Electronic supplementary material The online version of this article (doi:10.1186/s13073-015-0244-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bianca Tesi
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, SE-17176, Stockholm, Sweden. .,Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Kristina Lagerstedt-Robinson
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Samuel C C Chiang
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-14186, Stockholm, Sweden
| | - Eya Ben Bdira
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, SE-17176, Stockholm, Sweden.,Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Miguel Abboud
- Department of Pediatrics and Adolescent Medicine, American University of Beirut, Beirut, Lebanon
| | - Burcu Belen
- Department of Pediatric Hematology, Izmir Katip Celebi University Medical Faculty, Tepecik Training and Research Hospital, Izmir, Turkey
| | - Omer Devecioglu
- Department of Pediatric Hematology Oncology, Istanbul Medical School, Istanbul, Turkey
| | - Zehra Fadoo
- Department of Oncology and Pediatrics, Aga Khan University, Karachi, Pakistan
| | - Allen E J Yeoh
- Viva-University Children's Cancer Centre, Department of Paediatric, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Merja Möttönen
- Department of Pediatrics and Adolescence, PEDEGO Research Unit, Oulu University Hospital, Oulu, Finland
| | - Himmet Haluk Akar
- Department of Pediatric Immunology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Johanna Hästbacka
- Department of Perioperative and Intensive Care, Children's Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | - Zuhre Kaya
- Pediatric Hematology Unit of the Department of Pediatrics, Medical School of Gazi University, Ankara, Turkey
| | - Susana Nunes
- Hematology-Oncology Unit, Department of Pediatrics, São João Hospital Center, Oporto, Portugal
| | - Turkan Patiroglu
- Department of Pediatric Immunology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Magnus Sabel
- Institute of Clinical Sciences, Department of Pediatrics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Ebru Tugrul Saribeyoglu
- Department of Pediatric Hematology and Oncology and Bone Marrow Transplantation Unit, Medipol School of Medicine, Medipol University, Istanbul, Turkey
| | - Tor Henrik Tvedt
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ekrem Unal
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Sule Unal
- Department of Pediatrics, Division of Pediatric Hematology, Ankara, Turkey
| | - Aysegul Unuvar
- Division of Pediatric Hematology and Oncology, Istanbul School of Medicine, Istanbul University, Istanbul, Turkey
| | - Marie Meeths
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, SE-17176, Stockholm, Sweden.,Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, SE-17176, Stockholm, Sweden
| | - Magnus Nordenskjöld
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Yenan T Bryceson
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-14186, Stockholm, Sweden. .,Broegelmann Research Laboratory, The Gades Institute, University of Bergen, Bergen, Norway.
| |
Collapse
|
8
|
Panigrahi I, Suthar R, Rawat A, Behera B. Seizure as the presenting manifestation in Griscelli syndrome type 2. Pediatr Neurol 2015; 52:535-8. [PMID: 25801174 DOI: 10.1016/j.pediatrneurol.2015.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/12/2015] [Accepted: 01/17/2015] [Indexed: 10/24/2022]
Abstract
BACKGROUND Griscelli syndrome is an autosomal recessive disease that is characterized by hypopigmentation of the skin and hair, presence of large clumps of pigment in hair shafts, and accumulation of melanosomes in melanocytes; it resembles Chediak-Higashi syndrome. Griscelli syndrome type 2 is caused by mutations in the RAB27A gene and has predominant immunologic abnormalities. METHOD A retrospective case analysis highlighting neurological complications in an individual with Griscelli syndrome type 2. RESULTS We present a 1-year-old girl with Griscelli syndrome type 2 in an Asian Indian family, confirmed by mutation analysis of the RAB27A gene. She presented with seizures and regression of developmental milestones following a brief febrile illness. Progressive neurological deterioration was associated with refractory status epilepticus. Neurological worsening may have resulted from the accelerated phase of the disease. CONCLUSION Griscelli syndrome type 2 is a rare primary immunodeficiency state with characteristic silvery hair, partial albinism, and immunological abnormalities. Predominant neurological presentation is rare, but it represents isolated central nervous system hemophagocytosis.
Collapse
Affiliation(s)
- Inusha Panigrahi
- Genetic and Metabolic Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Renu Suthar
- Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Pediatric Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Bijaylakshmi Behera
- Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
9
|
Latif AH, Tabassomi F, Abolhassani H, Hammarström L. Molecular diagnosis of primary immunodeficiency diseases in a developing country: Iran as an example. Expert Rev Clin Immunol 2014; 10:385-96. [DOI: 10.1586/1744666x.2014.880654] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Parvaneh N, Filipovich AH, Borkhardt A. Primary immunodeficiencies predisposed to Epstein-Barr virus-driven haematological diseases. Br J Haematol 2013; 162:573-86. [PMID: 23758097 DOI: 10.1111/bjh.12422] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epstein-Barr virus (EBV), a ubiquitous human herpesvirus, maintains lifelong subclinical persistent infections in humans. In the circulation, EBV primarily infects the B cells, and protective immunity is mediated by EBV-specific cytotoxic T cells (CTLs) and natural killer (NK) cells. However, EBV has been linked to several devastating diseases, such as haemophagocytic lymphohistiocytosis (HLH) and lymphoproliferative diseases in the immunocompromised host. Some types of primary immunodeficiencies (PIDs) are characterized by the development of EBV-associated complications as their predominant clinical feature. The study of such genetic diseases presents an ideal opportunity for a better understanding of the biology of the immune responses against EBV. Here, we summarize the range of PIDs that are predisposed to EBV-associated haematological diseases, describing their clinical picture and pathogenetic mechanisms.
Collapse
Affiliation(s)
- Nima Parvaneh
- Paediatric Infectious Diseases Research Centre, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | |
Collapse
|
11
|
Abstract
Griscelli syndrome (GS) is a rare autosomal recessive disorder associated with skin or hair hypopigmentation, hepatosplenomegaly, pancytopenia, and immunologic and central nervous system abnormalities. GS type II is caused by RAB27A mutations. We present RAB27A mutation analysis of 6 cases diagnosed as GS type II. Missense mutations (L26P and L130P) in 2 cases, deletion of 5 bases (514delCAAGC) in 2 cases, and 1 base deletion (148delA) in 2 cases were detected. This report has importance in phenotype-genotype correlation of different types of mutations including missense mutations and deletions within the RAB27A gene in GSII syndrome.
Collapse
|
12
|
Sieni E, Cetica V, Mastrodicasa E, Pende D, Moretta L, Griffiths G, Aricò M. Familial hemophagocytic lymphohistiocytosis: a model for understanding the human machinery of cellular cytotoxicity. Cell Mol Life Sci 2012; 69:29-40. [PMID: 21990010 PMCID: PMC11114696 DOI: 10.1007/s00018-011-0835-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 09/13/2011] [Accepted: 09/13/2011] [Indexed: 02/03/2023]
Abstract
Cytotoxic T lymphocytes, natural killer cells, and NKT cells are effector cells able to kill infected cells. In some inherited human disorders, a defect in selected proteins involved in the cellular cytotoxicity mechanism results in specific clinical syndromes, grouped under the name of familial hemophagocytic lymphohistiocytosis. Recent advances in genetic studies of these patients has allowed the identification of different genetic subsets. Additional genetic immune deficiencies may also induce a similar clinical picture. International cooperation and prospective trials resulted in refining the diagnostic and therapeutic approach to these rare diseases with improved outcome but also with improved knowledge of the mechanisms underlying granule-mediated cellular cytotoxicity in humans.
Collapse
Affiliation(s)
- Elena Sieni
- Dipartimento Oncoematologia Pediatrica e Cure Domiciliari, Azienda Ospedaliero-Universitaria Meyer, Viale Pieraccini, 24, 50139 Florence, Italy
| | - Valentina Cetica
- Dipartimento Oncoematologia Pediatrica e Cure Domiciliari, Azienda Ospedaliero-Universitaria Meyer, Viale Pieraccini, 24, 50139 Florence, Italy
| | - Elena Mastrodicasa
- S.C. di Oncoematologia Pediatrica con Trapianto di CSE, Ospedale “S.M. della Misericordia” A.O, Perugia, Italy
| | - Daniela Pende
- A.O.U. San Martino-IST, Istituto Nazionale Ricerca sul Cancro, Genoa, Italy
| | | | - Gillian Griffiths
- Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Cambridge, CB2 0XY UK
| | - Maurizio Aricò
- Dipartimento Oncoematologia Pediatrica e Cure Domiciliari, Azienda Ospedaliero-Universitaria Meyer, Viale Pieraccini, 24, 50139 Florence, Italy
| |
Collapse
|
13
|
Vincent LM, Gilbert F, DiPace JI, Ciccone C, Markello TC, Jeong A, Dorward H, Westbroek W, Gahl WA, Bussel JB, Huizing M. Novel 47.5-kb deletion in RAB27A results in severe Griscelli Syndrome Type 2. Mol Genet Metab 2010; 101:62-5. [PMID: 20591709 PMCID: PMC2922439 DOI: 10.1016/j.ymgme.2010.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/10/2010] [Accepted: 05/10/2010] [Indexed: 02/08/2023]
Abstract
Griscelli syndrome (GS), a rare autosomal recessive disorder characterized by partial albinism and immunological impairment and/or severe neurological impairment, results from mutations in the MYO5A (GS1), RAB27A (GS2), or MLPH (GS3) genes. We identified a Hispanic patient born of a consanguineous union who presented with immunodeficiency, partial albinism, hepatic dysfunction, hemophagocytosis, neurological impairment, nystagmus, and silvery hair indicative of Griscelli Syndrome Type 2 (GS2). We screened for point mutations, but only exons 2-6 of the patient's DNA could be PCR-amplified. Whole genome analysis using the Illumina 1M-Duo DNA Analysis BeadChip identified a homozygous deletion in the patient's DNA. The exact breakpoints of the 47.5-kb deletion were identified as chr15q15-q21.1: g.53332432_53379990del (NCBI Build 37.1); the patient lacks the promoter and 5'UTR regions of RAB27A, thus confirming the diagnosis of GS2.
Collapse
Affiliation(s)
- Lisa M. Vincent
- Section on Human Biochemical Genetics, Medical Genetics Branch, NHGRI, NIH, Bethesda, MD 20892, USA
| | - Fred Gilbert
- Department of Pediatrics, Division of Human Genetics, Weill Cornell Medical College and the New York Presbyterian-Weill Cornell Medical Center, New York, NY 10021, USA
| | - Jennifer I. DiPace
- Department of Pediatrics, Division of Hematology-Oncology, Weill Cornell Medical College and the New York Presbyterian-Weill Cornell Medical Center, New York, NY 10021, USA
| | - Carla Ciccone
- Section on Human Biochemical Genetics, Medical Genetics Branch, NHGRI, NIH, Bethesda, MD 20892, USA
| | - Thomas C. Markello
- Section on Human Biochemical Genetics, Medical Genetics Branch, NHGRI, NIH, Bethesda, MD 20892, USA
| | - Andrew Jeong
- Section on Human Biochemical Genetics, Medical Genetics Branch, NHGRI, NIH, Bethesda, MD 20892, USA
| | - Heidi Dorward
- Section on Human Biochemical Genetics, Medical Genetics Branch, NHGRI, NIH, Bethesda, MD 20892, USA
| | - Wendy Westbroek
- Section on Human Biochemical Genetics, Medical Genetics Branch, NHGRI, NIH, Bethesda, MD 20892, USA
| | - William A. Gahl
- Section on Human Biochemical Genetics, Medical Genetics Branch, NHGRI, NIH, Bethesda, MD 20892, USA
- Intramural Office of Rare Diseases, Office of the Director, NIH, Bethesda, MD 20892, USA
| | - James B. Bussel
- Department of Pediatrics, Division of Hematology-Oncology, Weill Cornell Medical College and the New York Presbyterian-Weill Cornell Medical Center, New York, NY 10021, USA
| | - Marjan Huizing
- Section on Human Biochemical Genetics, Medical Genetics Branch, NHGRI, NIH, Bethesda, MD 20892, USA
- Address correspondence to: Marjan Huizing, PhD, 10 Center Drive, Bldg. 10, Rm 10C103, MSC1851, Bethesda, Maryland 20892-1851, Phone: 301-402-2797, Fax: 301-480-7825,
| |
Collapse
|
14
|
Pachlopnik Schmid J, Ho CH, Chrétien F, Lefebvre JM, Pivert G, Kosco-Vilbois M, Ferlin W, Geissmann F, Fischer A, de Saint Basile G. Neutralization of IFNgamma defeats haemophagocytosis in LCMV-infected perforin- and Rab27a-deficient mice. EMBO Mol Med 2010; 1:112-24. [PMID: 20049711 PMCID: PMC3378118 DOI: 10.1002/emmm.200900009] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hereditary haemophagocytic lymphohistiocytosis (HLH) is a fatal inflammatory disease and treatments currently may lead to serious side effects. There is a pressing need for effective, less toxic treatments for this disease. Previous reports have suggested that interferon γ (IFNγ) has a role in the pathogenesis of HLH. Here, we report that blocking IFNγ had a therapeutic effect in two different murine models of human hereditary HLH (perforin-deficient and Rab27a-deficient mice, both infected with lymphocytic choriomeningitis virus). Therapeutic administration of an anti-IFNγ antibody induced recovery from haemophagocytosis in both genetic models, as evidenced by increased survival in perforin-deficient mice and correction of blood cytopenia, moderation of body temperature changes, decreased cytokinaemia, restoration of splenic architecture and reduced haemophagocytosis in the liver of both murine models. Involvement of the central nervous system in Rab27a-deficient mice was prevented by anti-IFNγ therapy. Hepatic T-cell infiltrates and virus persisted, with no detectable harm during the time course of these studies. These data strongly suggest that neutralization of IFNγ could be used in humans to safely alleviate the clinical manifestations of haemophagocytosis.
Collapse
Affiliation(s)
- Jana Pachlopnik Schmid
- Institut National de la Santé et de la Recherche Médicale, Unité U768, Laboratoire du Développement Normal et Pathologique du Système Immunitaire, Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ohbayashi N, Mamishi S, Ishibashi K, Maruta Y, Pourakbari B, Tamizifar B, Mohammadpour M, Fukuda M, Parvaneh N. Functional characterization of two RAB27A missense mutations found in Griscelli syndrome type 2. Pigment Cell Melanoma Res 2010; 23:365-74. [PMID: 20370853 DOI: 10.1111/j.1755-148x.2010.00705.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human Griscelli syndrome type 2 (GS-2) is characterized by partial albinism and a severe immunologic disorder as a result of RAB27A mutations. In melanocytes, Rab27A forms a tripartite complex with a specific effector Slac2-a/melanophilin and myosin Va, and the complex regulates melanosome transport. Here, we report a novel homozygous missense mutation of Rab27A, i.e. K22R, in a Persian GS-2 patient and the results of analysis of the impact of the K22R mutation and the previously reported I44T mutation on protein function. Both mutations completely abolish Slac2-a/melanophilin binding activity but they affect the biochemical properties of Rab27A differently. The Rab27A(K22R) mutant lacks the GTP binding ability and exhibits cytosolic localization in melanocytes. By contrast, neither intrinsic GTPase activity nor melanosomal localization of Rab27A is affected by the I44T mutation, but the Rab27A(I44T) mutant is unable to recruit Slac2-a/melanophilin. Interestingly, the two mutations differently affect binding to other Rab27A effectors, Slp2-a, Slp4-a/granuphilin-a, and Munc13-4. The Rab27A(K22R) mutant normally binds Munc13-4, but not Slp2-a or Slp4-a, whereas the Rab27A(I44T) mutant shows reduced binding activity to Slp2-a and Munc13-4 but normally binds Slp4-a.
Collapse
Affiliation(s)
- Norihiko Ohbayashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Meeths M, Bryceson YT, Rudd E, Zheng C, Wood SM, Ramme K, Beutel K, Hasle H, Heilmann C, Hultenby K, Ljunggren HG, Fadeel B, Nordenskjöld M, Henter JI. Clinical presentation of Griscelli syndrome type 2 and spectrum of RAB27A mutations. Pediatr Blood Cancer 2010; 54:563-72. [PMID: 19953648 DOI: 10.1002/pbc.22357] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Griscelli syndrome type 2 (GS2) is an autosomal-recessive immunodeficiency caused by mutations in RAB27A, clinically characterized by partial albinism and haemophagocytic lymphohistocytosis (HLH). We evaluated the frequency of RAB27A mutations in 21 unrelated patients with haemophagocytic syndromes without mutations in familial HLH (FHL) causing genes or an established diagnosis of GS2. In addition, we report three patients with known GS2. Moreover, neurological involvement and RAB27A mutations in previously published patients with genetically verified GS2 are reviewed. PROCEDURE Mutation analysis of RAB27A was performed by direct DNA sequencing. NK cell activity was evaluated and microscopy of the hair was performed to confirm the diagnosis. RESULTS RAB27A mutations were found in 1 of the 21 families. This Swedish family had three affected children with heterozygous compound mutations consisting of a novel splice error mutation, [c.239G>C], and a nonsense mutation, [c.550C>T], p.R184X. The three additional children all carried homozygous RAB27A mutations, one of which is a novel splice error mutation, [c.240-2A>C]. Of note, five of the six patients displayed neurological symptoms, while three out of six patients displayed NK cell activity within normal reference values, albeit low. A literature review revealed that 67% of GS2 patients have been reported with neurological manifestations. CONCLUSIONS Identification of RAB27A mutations can facilitate prompt diagnosis and treatment, and aid genetic counselling and prenatal diagnosis. Since five of six patients studied herein initially were diagnosed as having FHL, we conclude that the diagnosis of GS2 may be overlooked, particularly in fair-haired patients with haemophagocytic syndromes.
Collapse
Affiliation(s)
- Marie Meeths
- Childhood Cancer Research Unit, Department of Woman and Child Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Meschede IP, Santos TO, Izidoro-Toledo TC, Gurgel-Gianetti J, Espreafico EM. Griscelli syndrome-type 2 in twin siblings: case report and update on RAB27A human mutations and gene structure. Braz J Med Biol Res 2009; 41:839-48. [PMID: 19030707 DOI: 10.1590/s0100-879x2008001000002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 10/09/2008] [Indexed: 11/22/2022] Open
Abstract
Griscelli syndrome (GS) is a rare autosomal recessive disorder caused by mutation in the MYO5A (GS1, Elejalde), RAB27A (GS2) or MLPH (GS3) genes. Typical features of all three subtypes of this disease include pigmentary dilution of the hair and skin and silvery-gray hair. Whereas the GS3 phenotype is restricted to the pigmentation dysfunction, GS1 patients also show primary neurological impairment and GS2 patients have severe immunological deficiencies that lead to recurrent infections and hemophagocytic syndrome. We report here the diagnosis of GS2 in 3-year-old twin siblings, with silvery-gray hair, immunodeficiency, hepatosplenomegaly and secondary severe neurological symptoms that culminated in multiple organ failure and death. Light microscopy examination of the hair showed large, irregular clumps of pigments characteristic of GS. A homozygous nonsense mutation, C-T transition (c.550C>T), in the coding region of the RAB27A gene, which leads to a premature stop codon and prediction of a truncated protein (R184X), was found. In patient mononuclear cells, RAB27A mRNA levels were the same as in cells from the parents, but no protein was detected. In addition to the case report, we also present an updated summary on the exon/intron organization of the human RAB27A gene, a literature review of GS2 cases, and a complete list of the human mutations currently reported in this gene. Finally, we propose a flow chart to guide the early diagnosis of the GS subtypes and Chédiak-Higashi syndrome.
Collapse
Affiliation(s)
- I P Meschede
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | | | | | | | | |
Collapse
|
18
|
Hematopoietic stem cell transplantation in Griscelli syndrome type 2: a single-center report on 10 patients. Blood 2009; 114:211-8. [DOI: 10.1182/blood-2009-02-207845] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is the only curative treatment for Griscelli syndrome type 2, an inherited immune disorder causing fatal hemophagocytic lymphohistiocytosis (HLH). Optimal therapeutic modalities are not yet well known. We retrospectively analyzed the outcome for 10 patients who underwent HSCT in a single center between 1996 and 2008. Seven patients (70%) were cured of the primary immune defect (mean follow-up, 5.2 years; range, 0.8-12.0 years), 4 of them without neurologic sequelae. In the 3 deceased patients, death occurred within 110 days of HSCT and was probably due to adverse reaction to HSCT in 2 patients and to HLH relapse in one patient. One patient received 2 transplants because of graft failure. Clinical events included veno-occlusive disease (n = 5), acute (n = 7) or chronic (n = 1) graft-versus-host disease II-III, and Epstein-Barr virus–induced lymphoproliferative disease (n = 2). Of the 7 patients with neurologic involvement before HSCT, 4 survived and 2 presented sequelae. Furthermore, 1 patient lacking neurologic involvement before HSCT developed long-term sequelae. These results demonstrate the efficacy of HSCT in curing the immune disorder but also show that neurologic HLH before HSCT is a major factor, given the neurologic sequelae after otherwise successful HSCT. Additional studies are required to improve treatment.
Collapse
|
19
|
Van Gele M, Dynoodt P, Lambert J. Griscelli syndrome: a model system to study vesicular trafficking. Pigment Cell Melanoma Res 2009; 22:268-82. [DOI: 10.1111/j.1755-148x.2009.00558.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|