1
|
Smith C, du Toit R, Ollewagen T. Potential of bone morphogenetic protein-7 in treatment of lupus nephritis: addressing the hurdles to implementation. Inflammopharmacology 2023; 31:2161-2172. [PMID: 37626268 PMCID: PMC10518293 DOI: 10.1007/s10787-023-01321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Up to 50% of systemic lupus erythematosus (SLE) patients world-wide develop lupus nephritis (LN). In low to middle income countries and in particular in sub-Saharan Africa, where SLE is prevalent with a more aggressive course, LN and end stage renal disease is a major cause of mortality. While developed countries have the funding to invest in SLE and LN research, patients of African descent are often underrepresented in clinical trials. Thus, the complex influence of ethnicity and genetic background on outcome of LN and SLE as a whole, is not fully understood. Several pathophysiological mechanisms including major role players driving LN have been identified. A large body of literature suggest that prevention of fibrosis-which contributes to chronicity of LN-may significantly improve long-term prognosis. Bone morphogenetic protein-7 (BMP-7) was first identified as a therapeutic option in this context decades ago and evidence of its benefit in various conditions, including LN, is ever-increasing. Despite these facts, BMP-7 is not being implemented as therapy in the context of renal disease. With this review, we briefly summarise current understanding of LN pathology and discuss the evidence in support of therapeutic potential of BMP-7 in this context. Lastly, we address the obstacles that need to be overcome, before BMP-7 may become available as LN treatment.
Collapse
Affiliation(s)
- Carine Smith
- Experimental Medicine Research Group, Department Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa.
| | - Riette du Toit
- Division Rheumatology, Department Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa
| | - Tracey Ollewagen
- Experimental Medicine Research Group, Department Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa
| |
Collapse
|
2
|
Li R, Jia F, Ren K, Luo M, Min X, Xiao S, Xia Y. Fibroblast growth factor inducible 14 signaling facilitates anti-dsDNA IgG penetration into mesangial cells. J Cell Physiol 2020; 236:249-259. [PMID: 32542768 DOI: 10.1002/jcp.29838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022]
Abstract
Anti-double-stranded DNA (dsDNA) antibodies induce renal damage in patients with systemic lupus erythematosus by triggering fibrotic processes in kidney cells. However, the precise mechanism underlying penetration of anti-dsDNA immunoglubolin G (IgG) into cells remains unclear. This study was designed to investigate the effect of tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/fibroblast growth factor inducible 14 (Fn14) signaling on anti-dsDNA IgG penetration into cells. Mesangial cells were cultured in vitro, and stimulated with TWEAK and anti-dsDNA IgG. The results revealed that TWEAK dose-dependently enhanced cellular internalization of anti-dsDNA IgG and the expression of high-mobility group box 1 (HMGB1). In addition, TWEAK and anti-dsDNA IgG synthetically downregulate suppressor of cytokine signaling 1, and induce the expression of various fibrotic factors. Furthermore, inhibition of HMGB1 attenuates the enhancement effect of TWEAK on anti-dsDNA IgG internalization. The TWEAK upregulation of HMGB1 involves the nuclear factor-κB and phosphatidylinositide 3-kinase/protein kinase B pathways. Therefore, TWEAK/Fn14 signaling contributes to the penetration of anti-dsDNA IgG and relevant fibrotic processes in mesangial cells.
Collapse
Affiliation(s)
- Ruilian Li
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fangyan Jia
- Department of Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kaixuan Ren
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mai Luo
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyun Min
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shengxiang Xiao
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
3
|
Wang H, Lu M, Zhai S, Wu K, Peng L, Yang J, Xia Y. ALW peptide ameliorates lupus nephritis in MRL/lpr mice. Arthritis Res Ther 2019; 21:261. [PMID: 31791413 PMCID: PMC6889545 DOI: 10.1186/s13075-019-2038-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023] Open
Abstract
Background Lupus nephritis (LN) is a common and serious complication of systemic lupus erythematosus. Anti-double-stranded (ds) DNA immunoglobulin G (IgG) plays a pivotal role in the pathogenesis of LN. Currently, there are various therapies for patients with LN; however, most of them are associated with considerable side effects. We confirmed previously that ALW (ALWPPNLHAWVP), a 12-amino acid peptide, inhibited the binding of polyclonal anti-dsDNA antibodies to mesangial cells and isolated glomeruli in vitro. In this study, we further investigate whether the administration of ALW peptide decreases renal IgG deposition and relevant damage in MRL/lpr lupus-prone mice. Methods Forty female MRL/lpr mice were randomly divided into four groups. The mice were intravenously injected with D-form ALW peptide (ALW group), scrambled peptide (PLP group), and normal saline (NaCl group) or were not treated (blank group). The IgG deposition, the histopathologic changes, and the expressions of profibrotic factors were analyzed in the kidney of MRL/lpr mice. Results Compared with the other groups, glomerular deposition of IgG, IgG2a, IgG2b, and IgG3 was decreased in the ALW group. Moreover, ALW administration attenuated renal histopathologic changes in MRL/lpr mice, including mesangial proliferation and infiltration of inflammatory cells. Furthermore, the expressions of profibrotic cytokines, such as transforming growth factor-beta1 (TGF-β1) and platelet-derived growth factor B (PDGF-B), decreased in the serum and kidney tissue of ALW-treated mice. Conclusions Our study demonstrated that ALW peptide ameliorates the murine model of LN, possibly through inhibiting renal IgG deposition and relevant tissue inflammation and fibrosis.
Collapse
Affiliation(s)
- Huixia Wang
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Mei Lu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Siyue Zhai
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Kunyi Wu
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Lingling Peng
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jie Yang
- Department of Nephrology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
4
|
Wang X, Xia Y. Anti-double Stranded DNA Antibodies: Origin, Pathogenicity, and Targeted Therapies. Front Immunol 2019; 10:1667. [PMID: 31379858 PMCID: PMC6650533 DOI: 10.3389/fimmu.2019.01667] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 07/03/2019] [Indexed: 01/02/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by high-titer serological autoantibodies, including antibodies that bind to double-stranded DNA (dsDNA). The origin, specificity, and pathogenicity of anti-dsDNA antibodies have been studied from a wider perspective. These autoantibodies have been suggested to contribute to multiple end-organ injuries, especially to lupus nephritis, in patients with SLE. Moreover, serum levels of anti-DNA antibodies fluctuate with disease activity in patients with SLE. By directly binding to self-antigens or indirectly forming immune complexes, anti-dsDNA antibodies can accumulate in the glomerular and tubular basement membrane. These autoantibodies can also trigger the complement cascade, penetrate into living cells, modulate gene expression, and even induce profibrotic phenotypes of renal cells. In addition, the expression of suppressor of cytokine signaling 1 is reduced by anti-DNA antibodies simultaneously with upregulation of profibrotic genes. Anti-dsDNA antibodies may even participate in the pathogenesis of SLE by catalyzing hydrolysis of certain DNA molecules or peptides in cells. Recently, anti-dsDNA antibodies have been explored in greater depth as a therapeutic target in the management of SLE. A substantial amount of data indicates that blockade of pathogenic anti-dsDNA antibodies can prevent or even reverse organ damage in murine models of SLE. This review focuses on the recent research advances regarding the origin, specificity, classification, and pathogenicity of anti-dsDNA antibodies and highlights the emerging therapies associated with them.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
Fn14 Deficiency Ameliorates Anti-dsDNA IgG-Induced Glomerular Damage in SCID Mice. J Immunol Res 2018; 2018:1256379. [PMID: 30648117 PMCID: PMC6311848 DOI: 10.1155/2018/1256379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 10/14/2018] [Indexed: 12/18/2022] Open
Abstract
Many studies have demonstrated that anti-dsDNA IgG is closely associated with lupus nephritis. Recently, it was found that activation of the fibroblast growth factor-inducible 14 (Fn14) signaling pathway damages glomerular filtration barrier in MRL/lpr lupus-prone mice. However, MRL/lpr mice have high titers of serum autoantibodies other than anti-dsDNA IgG. The aim of this study was to further explore the effect of Fn14 deficiency on anti-dsDNA IgG-induced glomerular damage in severe combined immunodeficiency (SCID) mice that have no endogenous IgG. Fn14 deficiency was generated in SCID mice. The murine hybridoma cells producing control IgG or anti-dsDNA IgG were intraperitoneally injected into mice. In two weeks, the urine, serum, and kidney tissue samples were harvested from mice at sacrifice. It showed that the injection of anti-dsDNA IgG, but not control IgG hybridoma cells, induced proteinuria and glomerular damage in SCID mice. Between the wild-type (WT) and knockout (KO) mice injected with anti-dsDNA IgG hybridoma cells, the latter showed a decrease in both proteinuria and glomerular IgG deposition. The histopathological changes, inflammatory cell infiltration, and proinflammatory cytokine production were also attenuated in the kidneys of the Fn14-KO mice upon anti-dsDNA IgG injection. Therefore, Fn14 deficiency effectively protects SCID mice from anti-dsDNA IgG-induced glomerular damage.
Collapse
|
6
|
Zhou Y, Xiao L, Tang S. Annexin A2 and FTH1 are potential biomarkers for lupus nephritis. Exp Ther Med 2018; 16:3766-3776. [PMID: 30344652 PMCID: PMC6176168 DOI: 10.3892/etm.2018.6686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/20/2018] [Indexed: 12/21/2022] Open
Abstract
Lupus nephritis (LN) occurs in ~50% of patients with systemic lupus erythematosus and is a major cause of morbidity and mortality of the affected individuals. Therefore, identification of novel and predictive biomarkers for the early diagnosis and progression of LN is required. The present study included 10 patients with LN whose diagnoses were confirmed by renal biopsy and 5 healthy participants as control subjects. Sera were collected both from patients with LN and healthy controls. Subsequently, mesangial cells were treated with these sera for 24 h. Differential proteins between groups were detected by two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization time of flight mass spectrometry analysis. 2D-DIGE maps of cellar proteins were obtained for LN and normal control groups. A total of 45 proteins were characterized, and 2 low-abundance proteins were identified. Compared with the normal human sera group, expression level of Annexin A2 was elevated in patients with LN, while the expression of the ferritin heavy chain (FTH1) decreased in the LN group; the analysis was carried out by DeCyder version 7.0 automatically. The results of the present study suggest that Annexin A2 and FTH1 contributed to the progression of LN and could serve as potential biomarkers for this disease.
Collapse
Affiliation(s)
- Yanni Zhou
- Division of Nephrology, Xiamen Hospital of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Xiamen, Fujian 361000, P.R. China.,Division of Nephrology, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Liangxiang Xiao
- Division of Nephrology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Shuifu Tang
- Division of Nephrology, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
7
|
Wang H, Zheng C, Xu X, Zhao Y, Lu Y, Liu Z. Fibrinogen links podocyte injury with Toll-like receptor 4 and is associated with disease activity in FSGS patients. Nephrology (Carlton) 2018; 23:418-429. [PMID: 28407405 DOI: 10.1111/nep.13046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/24/2017] [Accepted: 03/15/2017] [Indexed: 12/19/2022]
Abstract
AIM Fibrinogen (Fg) is reported to participate in inflammation through Toll-like receptor 4 (TLR4). However, it remains unknown whether Fg might induce podocyte damage through TLR4 and be related to disease activity in patients with focal segmental glomerulosclerosis (FSGS). METHODS We observed Fg-induced alterations in actin and apoptosis in cultured human podocytes transfected with or without TLR4 siRNA. Expression of TLR4, phospho-p38 MAPK and phospho-NF-κB p65 was evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) or western blotting, and we analysed urinary Fg levels in adriamycin-treated mice and double immunofluorescence staining for TLR4, Fg and podocin. Urinary Fg changes were also analyzed in FSGS patients under prednisone treatment. RESULTS First, Fg dose-dependently induced actin damage and apoptosis in cultured human podocytes, with an Fg-induced increase in TLR4 expression, and TLR4 siRNA transfection prevented these effects. TLR4 knockdown inhibited activation of p38 MAPK and NF-κB p65 in podocytes. Elevated urinary Fg levels were positively correlated with albuminuria in adriamycin-treated mice, in which Fg and TLR4 colocalized and exhibited increased expression in podocytes. Additionally, elevated urinary Fg levels were positively correlated with 24-h proteinuria and foot process width in FSGS patients. Urinary Fg levels were significantly decreased in patients with complete remission but not in those without remission. CONCLUSIONS Fg induced podocytes injury via the TLR4-p38 MAPK-NF-κB p65 pathway. In FSGS patients, urinary Fg levels reflect therapeutic response to prednisone and disease activity.
Collapse
Affiliation(s)
- Hongtian Wang
- Division of Nephrology, Jinling Hospital, Southern Medical University, Nanjing, China.,National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Chunxia Zheng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiaodong Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yue Zhao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yinghui Lu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhihong Liu
- Division of Nephrology, Jinling Hospital, Southern Medical University, Nanjing, China.,National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
8
|
Artlett CM. The IL-1 family of cytokines. Do they have a role in scleroderma fibrosis? Immunol Lett 2018; 195:30-37. [DOI: 10.1016/j.imlet.2017.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022]
|
9
|
Wang H, Wang J, Xia Y. Defective Suppressor of Cytokine Signaling 1 Signaling Contributes to the Pathogenesis of Systemic Lupus Erythematosus. Front Immunol 2017; 8:1292. [PMID: 29085365 PMCID: PMC5650678 DOI: 10.3389/fimmu.2017.01292] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 09/26/2017] [Indexed: 12/19/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease involving injuries in multiple organs and systems. Exaggerated inflammatory responses are characterized as end-organ damage in patients with SLE. Although the explicit pathogenesis of SLE remains unclear, increasing evidence suggests that dysregulation of cytokine signals contributes to the progression of SLE through the Janus kinase/signal transducer and activator of transcription (STAT) signaling pathway. Activated STAT proteins translocate to the cell nucleus and induce transcription of target genes, which regulate downstream cytokine production and inflammatory cell infiltration. The suppressor of cytokine signaling 1 (SOCS1) is considered as a classical inhibitor of cytokine signaling. Recent studies have demonstrated that SOCS1 expression is decreased in patients with SLE and in murine lupus models, and this negatively correlates with the magnitude of inflammation. Dysregulation of SOCS1 signals participates in various pathological processes of SLE such as hematologic abnormalities and autoantibody generation. Lupus nephritis is one of the most serious complications of SLE, and it correlates with suppressed SOCS1 signals in renal tissues. Moreover, SOCS1 insufficiency affects the function of several other organs, including skin, central nervous system, liver, and lungs. Therefore, SOCS1 aberrancy contributes to the development of both systemic and local inflammation in SLE patients. In this review, we discuss recent studies regarding the roles of SOCS1 in the pathogenesis of SLE and its therapeutic implications.
Collapse
Affiliation(s)
- Huixia Wang
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jiaxing Wang
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
Dong Y, Zhang Y, Xia L, Wang P, Chen J, Xu M, Liu X, Xia Y. The deposition of anti-DNA IgG contributes to the development of cutaneous lupus erythematosus. Immunol Lett 2017; 191:1-9. [PMID: 28899632 DOI: 10.1016/j.imlet.2017.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 09/01/2017] [Accepted: 09/07/2017] [Indexed: 12/11/2022]
Abstract
Anti-DNA IgG is a hallmark of systemic lupus erythematosus and induces internal injuries in patients. It is known that cutaneous lupus erythematosus (CLE) involves the deposition of autoantibodies in the dermoepidermal junction of the skin and that anti-DNA IgG binds specifically to keratinocytes. However, the definite role of anti-DNA IgG in CLE remains unclear. The purpose of this study was to elucidate the effect of anti-DNA IgG on keratinocytes in CLE. Skin tissues were collected from patients with CLE and healthy controls. Also, murine anti-DNA IgG was incubated with frozen sections of murine skin or PAM212 keratinocytes. The chemotaxis of J774.2 macrophages was evaluated in special chambers with keratinocytes under anti-DNA IgG stimulation. Enzyme-linked immunosorbent assay, flow cytometry, Western blot, and surface plasmon resonance were used to quantitate the interaction between anti-DNA IgG and keratinocyte-related self-antigens. The results showed that anti-DNA IgG could be eluted from the lesional tissues of CLE patients, depending on the serum positivity. Murine anti-DNA IgG bound preferably to the dermoepidermal zones of normal skin and specifically to collagen III and the suppressor of cytokine signalling 1 (SOCS1) but not to Ro52. Moreover, the chemotaxis of macrophages was promoted by the incubation of anti-DNA IgG with keratinocytes. Interestingly, anti-DNA IgG exaggerated both the expression and the activation of fibroblast growth factor inducible 14 (Fn14) in keratinocytes and regulated SOCS1 signals in a time-dependent manner. In conclusion, anti-DNA IgG may contribute to the development of CLE through binding to keratinocyte-related antigens, exacerbating inflammatory infiltration, and modulating Fn14 and SOCS1 pathways.
Collapse
Affiliation(s)
- Yingying Dong
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710004, China
| | - Yi Zhang
- Intensive Care Unit, China Gezhouba Group Central Hospital, The Third Clinical Medical College of China Three Gorges University, Yichang, 443000, China
| | - Linlin Xia
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ping Wang
- Department of Immunology & Microbiology, Wannan Medical College, Wuhu, 241001, China
| | - Jingyun Chen
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710004, China
| | - Meifeng Xu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710004, China
| | - Xingyin Liu
- Department of Pathogenic Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
11
|
TWEAK/Fn14 Activation Contributes to the Pathogenesis of Bullous Pemphigoid. J Invest Dermatol 2017; 137:1512-1522. [DOI: 10.1016/j.jid.2017.03.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 01/05/2023]
|
12
|
Liu Y, Xu M, Min X, Wu K, Zhang T, Li K, Xiao S, Xia Y. TWEAK/Fn14 Activation Participates in Ro52-Mediated Photosensitization in Cutaneous Lupus Erythematosus. Front Immunol 2017; 8:651. [PMID: 28620393 PMCID: PMC5449764 DOI: 10.3389/fimmu.2017.00651] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/17/2017] [Indexed: 12/21/2022] Open
Abstract
Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) binds to its sole receptor fibroblast growth factor-inducible 14 (Fn14), participating in various inflammatory responses. Recently, TWEAK/Fn14 activation was found prominent in the lesions of cutaneous lupus erythematosus (CLE). This study was designed to further reveal the potential role of this pathway in Ro52-mediated photosensitization. TWEAK, Fn14, and Ro52 were determined in the skin lesions of patients with CLE. Murine keratinocytes received ultraviolet B (UVB) irradiation or plus TWEAK stimulation and underwent detection for Ro52 and proinflammatory cytokines. The chemotaxis of J774.2 macrophages was evaluated on TWEAK stimulation of cocultured keratinocytes. We found that TWEAK, Fn14, and downstream cytokines were highly expressed in CLE lesions that overexpressed Ro52. Moreover, TWEAK enhanced the UVB-induced Ro52 upregulation in murine keratinocytes. Meanwhile, TWEAK stimulation of keratinocytes favored the migration of macrophages through promoting the production of chemokine C–C motif ligands 17 and 22. Furthermore, Fn14 siRNA transfection or nuclear factor-kappa B (NF-κB) inhibitor abrogated the TWEAK enhancement of Ro52 expression in keratinocytes. Similarly, TNF receptor associated factor 2 (TRAF2) siRNA reduced the protein level of Ro52 in these cells upon TWEAK stimulation. Interestingly, UVB irradiation increased the expression of TNF receptor type 1 (TNFR1) but not affecting TNFR2 expression in keratinocytes. In conclusion, the TWEAK/Fn14 signaling participates in Ro52-mediated photosensitization and involves the activation of NF-κB pathway as well as the function of the TRAF2/TNFR partners.
Collapse
Affiliation(s)
- Yale Liu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Meifeng Xu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyun Min
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Kunyi Wu
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Ting Zhang
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Ke Li
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Shengxiang Xiao
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Wang P, Yang J, Tong F, Duan Z, Liu X, Xia L, Li K, Xia Y. Anti-Double-Stranded DNA IgG Participates in Renal Fibrosis through Suppressing the Suppressor of Cytokine Signaling 1 Signals. Front Immunol 2017; 8:610. [PMID: 28620377 PMCID: PMC5449454 DOI: 10.3389/fimmu.2017.00610] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022] Open
Abstract
Suppressor of cytokine signaling 1 (SOCS1) participates in renal fibrosis by downregulating Janus kinase 2 (JAK2)/signal transducer and activator of transcription 1 (STAT1)-mediated cytokine signaling. Recently, it was found that anti-double-stranded DNA (dsDNA) IgG induces the synthesis of profibrotic cytokines by renal cells. To explore the potential effect of anti-dsDNA IgG on SOCS1-mediated renal fibrosis, kidney tissues were collected from patients with lupus nephritis (LN) as well as MRL/lpr lupus-prone mice. The SOCS1 expression was evaluated in tissue samples. In addition, SCID mice were injected with anti-dsDNA IgG, followed by evaluation of SOCS1 levels. Renal resident cells were cultured in vitro, receiving the stimulation of anti-dsDNA IgG and then the measurement of SOCS1, JAK2, STAT1α, and profibrotic cytokines. Moreover, the binding of anti-dsDNA IgG to SOCS1 kinase inhibitory region (KIR) peptide was analyzed by surface plasmon resonance. We found that SOCS1 expression was inhibited, but JAK2/STAT1 activation was prominent in the kidney tissues of patients with LN, MRL/lpr mice, or anti-dsDNA IgG-injected SCID mice. The cultured renal cells also showed SOCS1 downregulation, JAK2/STAT1 activation, and profibrotic cytokine promotion upon anti-dsDNA IgG stimulation. Surprisingly, anti-dsDNA IgG showed high affinity to KIR peptide and competed with JAK2 loop for KIR. Additionally, a DNA-mimicking peptide (ALW) blocked the binding of anti-dsDNA IgG to KIR, and even partially abrogated the activation of JAK2/STAT1α signals and the expression of profibrotic cytokines in SCID mice. In conclusion, anti-dsDNA IgG downregulates SOCS1 expression, activates JAK2/STAT1 signals, and contributes to renal fibrosis; its peptide blockade may restore the SOCS1 inhibitory effect on the production of profibrotic cytokine, and finally ameliorate renal fibrosis in LN.
Collapse
Affiliation(s)
- Ping Wang
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jie Yang
- Department of Nephrology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Fang Tong
- Department of Immunology and Microbiology, Wannan Medical College, Wuhu, China
| | - Zhaoyang Duan
- Department of Nephrology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xingyin Liu
- Department of Pathogenic Biology, Nanjing Medical University, Nanjing, China
| | - Linlin Xia
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Ke Li
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
An J, Zhang D, Wu J, Li J, Teng X, Gao X, Li R, Wang X, Xia L, Xia Y. The acitretin and methotrexate combination therapy for psoriasis vulgaris achieves higher effectiveness and less liver fibrosis. Pharmacol Res 2017; 121:158-168. [PMID: 28414177 DOI: 10.1016/j.phrs.2017.04.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/30/2017] [Accepted: 04/11/2017] [Indexed: 02/05/2023]
Abstract
Both acitretin and methotrexate are effective in ameliorating psoriatic lesion. However, their combination has been seldom reported in the treatment of psoriasis because of the warning regarding the potential hepatotoxicity of the drug interactions. This study was designed to investigate the effectiveness of such combination therapy for psoriasis vulgaris, and the potential benefit as well as side effect during the treatment. Thirty-nine patients with psoriasis vulgaris were treated with acitretin, methotrexate or their combination or as control. Similarly, K14-VEGF transgenic psoriasis-like mice were treated with these drugs. Human primary keratinocytes and hepatic stellate cells were used for analyzing their effect in vitro. The results showed that the combination therapy exhibited higher effectiveness in remitting skin lesion, but did not significantly affect the liver function of both patients and mice. Moreover, the combination groups showed less elevation of profibrotic factors in sera when compared with methotrexate alone groups accordingly. Furthermore, primary keratinocytes expressed more involucrin as well as loricrin and proliferated more slowly on the combined stimulation. Interestingly, such combination treatment induced lower expression of profibrotic factors in hepatic stellate cells. In conclusion, the acitretin-methotrexate combination therapy for psoriasis vulgaris can achieve higher effectiveness and result in less liver fibrosis.
Collapse
Affiliation(s)
- Jingang An
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Dingwei Zhang
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jiawen Wu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Jiong Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, China
| | - Xiu Teng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, China
| | - Xiaomin Gao
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Ruilian Li
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xiuying Wang
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Linlin Xia
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
15
|
Huang BY, Hu P, Zhang DD, Jiang GM, Liu SY, Xu Y, Wu YF, Xia X, Wang Y. C-type natriuretic peptide suppresses mesangial proliferation and matrix expression via a MMPs/TIMPs-independent pathway in vitro. J Recept Signal Transduct Res 2017; 37:355-364. [PMID: 28554303 DOI: 10.1080/10799893.2017.1286674] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Bao Yu Huang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Peng Hu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Dong Dong Zhang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Guang Mei Jiang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Si Yan Liu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Yao Xu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Yang Fang Wu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Xun Xia
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Ya Wang
- Anhui Provincial Children’s Hospital, Hefei, PR China
| |
Collapse
|
16
|
Anti-dsDNA antibodies and resident renal cells - Their putative roles in pathogenesis of renal lesions in lupus nephritis. Clin Immunol 2016; 185:40-50. [PMID: 27612436 DOI: 10.1016/j.clim.2016.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 09/01/2016] [Accepted: 09/04/2016] [Indexed: 01/19/2023]
Abstract
Lupus nephritis affects up to 70% of patients with systemic lupus erythematosus and is an important treatable cause of kidney failure. Cardinal features of lupus nephritis include loss of self-tolerance, production of autoantibodies, immune complex deposition and immune-mediated injury to the kidney, resulting in increased cell proliferation, apoptosis, and induction of inflammatory and fibrotic processes that destroy normal nephrons. The production anti-dsDNA antibodies is a cardinal feature in lupus and their level correlates with disease activity. In addition to the formation of immune complexes thereby triggering complement activation, how anti-dsDNA antibodies home to the kidney and induce pathological processes in the renal parenchyma remain to be fully elucidated. Data from our laboratory and other investigators show that the properties of anti-dsDNA antibodies vary between patients and change over time, and that anti-dsDNA antibodies could bind directly to integral cell surface molecules such as annexin II or α-actinin, or indirectly through chromatin material deposited on the cell surface. The binding of anti-dsDNA antibodies to mesangial cells and proximal renal tubular epithelial cells triggers downstream inflammatory and fibrotic pathways, which include the activation of the PKC and MAPK signaling pathways, increased secretion of pro-inflammatory cytokines and matrix protein deposition that contribute to pathological processes in the renal parenchyma.
Collapse
|
17
|
Liu X, Liu Y, Xu M, Li J, Teng X, Cheng H, Xia Y. Zinc finger protein A20 is involved in the antipsoriatic effect of calcipotriol. Br J Dermatol 2016; 175:314-24. [PMID: 26875609 DOI: 10.1111/bjd.14481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2016] [Indexed: 02/05/2023]
Affiliation(s)
- X. Liu
- Department of Dermatology; The Third Affiliated Hospital of Soochow University; Changzhou China
| | - Y. Liu
- Department of Dermatology; The Second Affiliated Hospital; School of Medicine; Xi'an Jiaotong University; Xi'an 710004 China
| | - M. Xu
- Department of Dermatology; The Second Affiliated Hospital; School of Medicine; Xi'an Jiaotong University; Xi'an 710004 China
| | - J. Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy; West China Hospital; Sichuan University; Chengdu China
| | - X. Teng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy; West China Hospital; Sichuan University; Chengdu China
| | - H. Cheng
- Department of Medicine; The Second Affiliated Hospital; School of Medicine; Xi'an Jiaotong University; Xi'an 710004 China
| | - Y. Xia
- Department of Dermatology; The Second Affiliated Hospital; School of Medicine; Xi'an Jiaotong University; Xi'an 710004 China
| |
Collapse
|
18
|
Xu M, Zhang Y, Cheng H, Liu Y, Zou X, Zhan N, Xiao S, Xia Y. Transcription factor 7-like 1 dysregulates keratinocyte differentiation through upregulating lipocalin 2. Cell Death Discov 2016; 2:16028. [PMID: 27551519 PMCID: PMC4979464 DOI: 10.1038/cddiscovery.2016.28] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 02/07/2023] Open
Abstract
Recent studies strongly suggested that transcription factor 7-like 1 (Tcf7l1, also known as Tcf3) is involved in the differentiation of several types of cells, and demonstrated that Tcf7l1 modulates keratinocytes physiologically through regulating lipocalin 2 (LCN2), a key regulator of cell differentiation. To reveal the potential role of Tcf7l1 in the dysregulation of keratinocyte differentiation, both Tcf7l1 and LCN2 were determined in a variety of skin disorders. The in vitro effect of Tcf7l1 on keratinocyte differentiation was studied by culturing SCC-13 cells, and the human foreskin keratinocytes (HFKs) that were transfected with vectors for overexpressing human papillomavirus E6/E7 or Tcf7l1 genes. We found that both Tcf7l1 and LCN2 were highly expressed in those diseases characterized by defective keratinocyte differentiation (especially psoriasis vulgaris, condyloma acuminatum, squamous cell carcinoma, etc). Moreover, compared with control HFKs, SCC-13 cells and E6/E7-harboring HFKs expressed more Tcf7l1 and LCN2. Tcf7l1 siRNA transfection decreased LCN2 but increased involucrin and loricrin in HFKs under calcium stimuli. Conversely, Tcf7l1 overexpression in SCC-13 cells or vector-transfected HFKs induced lower involucrin and loricrin expression and less keratinocyte apoptosis, both of which, however, were partially abrogated by LCN2 siRNA or neutralizing anti-LCN2 antibody. Interestingly, the Tcf7l1 expression in HFKs correlated positively with the MMP-2 level, and the inhibition of MMP-2 decreased the LCN2 level and even attenuated the effect of Tcf7l1 on LCN2 expression. Therefore, Tcf7l1 dysregulates keratinocyte differentiation, possibly through upregulating the LCN2 pathway in an MMP-2 mediated manner. Elucidating the interaction between Tcf7l1 and LCN2 may help understand disordered cell differentiation in some skin diseases.
Collapse
Affiliation(s)
- M Xu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University , Xi'an 710004, China
| | - Y Zhang
- Intensive Care Unit, China Gezhouba Group Central Hospital, The Third Clinical Medical College of China Three Gorges University , Yichang, China
| | - H Cheng
- Department of Medicine, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University , Xi'an, China
| | - Y Liu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University , Xi'an 710004, China
| | - X Zou
- Department of Dermatology, Hubei Maternity and Child Health Hospital , Wuhan, China
| | - N Zhan
- Department of Pathology, Renmin Hospital of Wuhan University , Wuhan, China
| | - S Xiao
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University , Xi'an 710004, China
| | - Y Xia
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University , Xi'an 710004, China
| |
Collapse
|
19
|
Xia Y, Eryilmaz E, Der E, Pawar RD, Guo X, Cowburn D, Putterman C. A peptide mimic blocks the cross-reaction of anti-DNA antibodies with glomerular antigens. Clin Exp Immunol 2015; 183:369-79. [PMID: 26482679 DOI: 10.1111/cei.12734] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2015] [Indexed: 12/29/2022] Open
Abstract
Anti-DNA antibodies play a pivotal role in the pathogenesis of lupus nephritis by cross-reacting with renal antigens. Previously, we demonstrated that the binding affinity of anti-DNA antibodies to self-antigens is isotype-dependent. Furthermore, significant variability in renal pathogenicity was seen among a panel of anti-DNA isotypes [derived from a single murine immunoglobulin (Ig)G3 monoclonal antibody, PL9-11] that share identical variable regions. In this study, we sought to select peptide mimics that effectively inhibit the binding of all murine and human anti-DNA IgG isotypes to glomerular antigens. The PL9-11 panel of IgG anti-DNA antibodies (IgG1, IgG2a, IgG2b and IgG3) was used for screening a 12-mer phage display library. Binding affinity was determined by surface plasmon resonance. Enzyme-linked immunosorbent assay (ELISA), flow cytometry and glomerular binding assays were used for the assessment of peptide inhibition of antibody binding to nuclear and kidney antigens. We identified a 12 amino acid peptide (ALWPPNLHAWVP, or 'ALW') which binds to all PL9-11 IgG isotypes. Preincubation with the ALW peptide reduced the binding of the PL9-11 anti-DNA antibodies to DNA, laminin, mesangial cells and isolated glomeruli significantly. Furthermore, we confirmed the specificity of the amino acid sequence in the binding of ALW to anti-DNA antibodies by alanine scanning. Finally, ALW inhibited the binding of murine and human lupus sera to dsDNA and glomeruli significantly. In conclusion, by inhibiting the binding of polyclonal anti-DNA antibodies to autoantigens in vivo, the ALW peptide (or its derivatives) may potentially be a useful approach to block anti-DNA antibody binding to renal tissue.
Collapse
Affiliation(s)
- Y Xia
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.,Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - E Eryilmaz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - E Der
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.,Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - R D Pawar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.,Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - X Guo
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - D Cowburn
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - C Putterman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.,Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
20
|
Xia Y, Eryilmaz E, Zhang Q, Cowburn D, Putterman C. Anti-DNA antibody mediated catalysis is isotype dependent. Mol Immunol 2015; 69:33-43. [PMID: 26655427 DOI: 10.1016/j.molimm.2015.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/29/2015] [Accepted: 11/01/2015] [Indexed: 12/27/2022]
Abstract
Anti-DNA antibodies are the serological hallmark of systemic lupus erythematosus, and participate in the pathogenesis of lupus nephritis by cross-reacting with multiple renal antigens. Previously, using a panel of murine anti-DNA IgGs that share identical variable regions but that differ in the constant regions, we demonstrated that the cross-reaction and renal pathogenicity of anti-DNA antibodies are isotype dependent. In this study, we investigated the catalytic potential of this anti-DNA antibody panel, and determined its isotype dependency. The three isotype switch variants (IgG1, IgG2a, IgG2b) and the parent IgG3 PL9-11 anti-DNA antibodies were compared in their catalysis of 500 base pair linear double stranded DNA and a 12-mer peptide (ALWPPNLHAWVP), by gel analysis, MALDI-TOF mass spectrometry, and nuclear magnetic resonance spectroscopy. The binding affinity of anti-DNA antibodies to double stranded DNA and peptide antigens were assessed by ELISA and surface plasmon resonance. We found that the PL9-11 antibody isotypes vary significantly in their potential to catalyze the cleavage of both linear and double stranded DNA and the proteolysis of peptides. The degree of the cleavage and proteolysis increases with the incubation temperature and time. While different PL9-11 isotypes have the same initial attack sites within the ALWPPNLHAWVP peptide, there was no correlation between binding affinity to the peptide and proteolysis rates. In conclusion, the catalytic properties of anti-DNA antibodies are isotype dependent. This finding provides further evidence that antibodies that share the same variable region, but which have different constant regions, are functionally distinct. The catalytic effects modulated by antibody constant regions need to be considered in the design of therapeutic antibodies (abzymes) and peptides designed to block pathogenic autoantibodies.
Collapse
Affiliation(s)
- Yumin Xia
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Ertan Eryilmaz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Qiuting Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - David Cowburn
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Chaim Putterman
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
21
|
Cai M, Zhou T, Wang X, Shang M, Zhang Y, Luo M, Xu C, Yuan W. DC-SIGN expression on podocytes and its role in inflammatory immune response of lupus nephritis. Clin Exp Immunol 2015; 183:317-25. [PMID: 26440060 DOI: 10.1111/cei.12723] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2015] [Indexed: 01/11/2023] Open
Abstract
Podocytes, the main target of immune complex, participate actively in the development of glomerular injury as immune cells. Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) is an innate immune molecular that has an immune recognition function, and is involved in mediation of cell adhesion and immunoregulation. Here we explored the expression of DC-SIGN on podocytes and its role in immune and inflammatory responses in lupus nephritis (LN). Expression of DC-SIGN and immunoglobulin (Ig)G1 was observed in glomeruli of LN patients. DC-SIGN was co-expressed with nephrin on podocytes. Accompanied by increased proteinuria of LN mice, DC-SIGN and IgG1 expressions were observed in the glomeruli from 20 weeks, and the renal function deteriorated up to 24 weeks. Mice with anti-DC-SIGN antibody showed reduced proteinuria and remission of renal function. After the podocytes were stimulated by serum of LN mice in vitro, the expression of DC-SIGN, major histocompatibility complex (MHC) class II and CD80 was up-regulated, stimulation of T cell proliferation was enhanced and the interferon (IFN)-γ/interleukin (IL)-4 ratio increased. However, anti-DC-SIGN antibody treatment reversed these events. These results suggested that podocytes in LN can exert DC-like function through their expression of DC-SIGN, which may be involved in immune and inflammatory responses of renal tissues. However, blockage of DC-SIGN can inhibit immune functions of podocytes, which may have preventive and therapeutic effects.
Collapse
Affiliation(s)
- Minchao Cai
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University
| | - Tong Zhou
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan Wang
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University
| | - Minghua Shang
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University
| | - Yueyue Zhang
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University
| | - Maocai Luo
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chundi Xu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijie Yuan
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University
| |
Collapse
|
22
|
Yung S, Chan TM. Mechanisms of Kidney Injury in Lupus Nephritis - the Role of Anti-dsDNA Antibodies. Front Immunol 2015; 6:475. [PMID: 26441980 PMCID: PMC4569852 DOI: 10.3389/fimmu.2015.00475] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/01/2015] [Indexed: 01/12/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by a breakdown of self-tolerance, production of auto-antibodies and immune-mediated injury, resulting in damage accrual in multiple organs. Kidney involvement, termed lupus nephritis, is a major cause of morbidity and mortality that affects over half of the SLE population during the course of disease. The etiology of lupus nephritis is multifactorial and remains to be fully elucidated. Accumulating evidence suggests that in addition to forming immune complexes and triggering complement activation, anti-dsDNA antibodies contribute to the pathogenesis of lupus nephritis through binding, either directly or indirectly, to cross-reactive antigens or chromatin materials, respectively, to resident renal cells and/or extracellular matrix components, thereby triggering downstream cellular activation and proliferation as well as inflammatory and fibrotic processes. Several cross-reactive antigens that mediate anti-dsDNA antibody binding have been identified, such as annexin II and alpha-actinin. This review discusses the mechanisms through which anti-dsDNA antibodies contribute to immunopathogenesis in lupus nephritis. Corticosteroids combined with either mycophenolic acid (MPA) or cyclophosphamide is the current standard of care immunosuppressive therapy for severe lupus nephritis. This review also discusses recent data showing distinct effects of MPA and cyclophosphamide on inflammatory and fibrotic processes in resident renal cells.
Collapse
Affiliation(s)
- Susan Yung
- Department of Medicine, Queen Mary Hospital, University of Hong Kong , Hong Kong , China
| | - Tak Mao Chan
- Department of Medicine, Queen Mary Hospital, University of Hong Kong , Hong Kong , China
| |
Collapse
|
23
|
Zheng L, Hui Q, Tang L, Zheng L, Jin Z, Yu B, Wang Z, Lin P, Yu W, Li H, Li X, Wang X. TAT-Mediated Acidic Fibroblast Growth Factor Delivery to the Dermis Improves Wound Healing of Deep Skin Tissue in Rat. PLoS One 2015; 10:e0135291. [PMID: 26271041 PMCID: PMC4536212 DOI: 10.1371/journal.pone.0135291] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 07/20/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The definition of deep tissue injury was derived from multiple clinical cases as "A purple or maroon localized area of discolored intact skin or blood-filled blister due to damage of underlying soft tissue from pressure and/or shear". Acidic fibroblast growth factor (aFGF) significantly improves wound healing under diabetic conditions. However, to date, the therapeutic application of aFGF has been limited, due to its low delivery efficiency and short half-life. METHODOLOGY/PRINCIPAL FINDINGS Using an animal model of magnet-induced pressure ulcers, transactivator of transcription protein (TAT)-aFGF was evaluated for transdermal delivery and wound healing. Immunohistochemistry and Western blotting were also performed to determine the expression of transforming growth factor (TGF)-β1, α-smooth muscle actin (α-SMA), CD68, proliferating cell nuclear antigen (PCNA) and TGF-β-receptor II (TGF- βRII) in cultured human dermal fibroblasts. We found that that mice treated with TAT-aFGF had higher accumulation of aFGF in both dermis and subcutaneous tissues compared with mice treated with aFGF alone. In the remodeling phase, TAT-aFGF treatment decreased the expression of α-SMA to normal levels, thereby facilitating normal wound healing processes and abrogating hypertrophic scarring. In human dermal fibroblasts, TAT-aFGF reversed the suppressive effect of TNF-α on α-SMA expression and restored TGF-βRII and TGF-β1 expression. CONCLUSIONS/SIGNIFICANCE Our results demonstrate that TAT-aFGF has a favorable therapeutic effect on the healing of subcutaneous deep tissue injury.
Collapse
Affiliation(s)
- Long Zheng
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
| | - Qi Hui
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
| | - Lu Tang
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
| | - Lulu Zheng
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
| | - Zi Jin
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
| | - Bingjie Yu
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
| | - Zhitao Wang
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
| | - Peng Lin
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
| | - Weidan Yu
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
| | - Haiyan Li
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
- * E-mail: (XW); (XL); (HL)
| | - Xiaokun Li
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
- * E-mail: (XW); (XL); (HL)
| | - Xiaojie Wang
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
- * E-mail: (XW); (XL); (HL)
| |
Collapse
|
24
|
Artlett CM, Thacker JD. Molecular activation of the NLRP3 Inflammasome in fibrosis: common threads linking divergent fibrogenic diseases. Antioxid Redox Signal 2015; 22:1162-75. [PMID: 25329971 DOI: 10.1089/ars.2014.6148] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Over the past 10 years, there has been a plethora of investigations centering on the NLRP3 inflammasome and its role in fibrosis and other disease pathologies. To date, the signaling pathways from the inflammasome to myofibroblast differentiation and chronic collagen synthesis have not been fully elucidated, and many questions are left to be answered. RECENT ADVANCES Recent studies have demonstrated the significant and critical role of reactive oxygen species (ROS) and calcium signaling in the assembly of the inflammasome, and this may result in autocrine signaling maintaining the myofibroblast phenotype, leading to fibrotic disease. CRITICAL ISSUES Traditionally, myofibroblasts under tight regulation aid in wound healing and then, once the wound has closed, undergo apoptosis and the collagen in the wound remodels. During fibrosis, however, the myofibroblast maintains an activated state via a chronically activated inflammasome, leading to the continual synthesis of collagens and other extracellular matrix proteins that result in damage to the tissue or organ. The mechanism that is driving this abnormality has not been fully elucidated. FUTURE DIRECTIONS However, studies have been conducted to suggest that modulating the calcium or the ROS axis may be of therapeutic value in regulating inflammasome activation. A number of novel drugs are currently being developed that may prove beneficial to patients suffering from fibrotic diseases.
Collapse
Affiliation(s)
- Carol M Artlett
- 1 Department of Microbiology and Immunology, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | | |
Collapse
|
25
|
Tan Y, Wang Y, Li L, Xia J, Peng S, He Y. Chemokine-like factor 1-derived C-terminal peptides induce the proliferation of dermal microvascular endothelial cells in psoriasis. PLoS One 2015; 10:e0125073. [PMID: 25915746 PMCID: PMC4410955 DOI: 10.1371/journal.pone.0125073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/19/2015] [Indexed: 11/18/2022] Open
Abstract
Psoriasis is an inflammatory disease characterized by the abnormal proliferation of skin cells, including dermal microvascular endothelial cells. Recently, chemokine-like factor 1 (CKLF1) was found to participate in the local inflammation and cell proliferation. To explore its role in the pathogenesis of psoriasis, the expression of both CKLF1 and its receptor (CCR4) was determined in the psoriatic lesions. Also, the effect of the C-terminal peptides (C19 and C27) of CKLF1 on the proliferation of human umbilical vein endothelial cells was studied in vitro. By immunohistochemistry and immunofluorescence, the expression of both CKLF1 and CCR4 was determined in the psoriatic lesions. The effect of C-terminal peptides on human umbilical vein endothelial cells (HUVECs) was studied in vitro by the evaluation of cell proliferation and apoptosis. The in vivo assessment was performed accordingly through the subcutaneous injection peptides on BALB/c mice. The results showed that, by immunohistochemistry, both CKLF1 and CCR4 were increasingly expressed in psoriatic lesions as compared to normal skins. Moreover, the primary umbilical vein endothelial cells exhibited higher proliferation ratio under the C19 or C27 stimulation, which was even enhanced by the addition of psoriatic sera or TNF-α. Furthermore, the enhancement of peptide simulation was accompanied with the activation of ERK1/2-MAPKs pathway. In addition, such effect of C19 and C27 was mirrored by the hyperproliferation of cutaneous microvessels in BALB/c mice that were subcutaneously injected with the two peptides. Therefore, we concluded that CKLF1 plays a role in the pathogenesis of psoriasis by promoting the proliferation of microvascular endothelial cells that possibly correlates with ERK1/2-MAPKs activation.
Collapse
Affiliation(s)
- Yaqi Tan
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yixuan Wang
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Li Li
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jinyu Xia
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shiguang Peng
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yanling He
- Department of Dermatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- * E-mail:
| |
Collapse
|
26
|
Targeting the B-cell pathway in lupus nephritis: current evidence and future perspectives. ScientificWorldJournal 2013; 2013:745239. [PMID: 24191142 PMCID: PMC3804405 DOI: 10.1155/2013/745239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 09/03/2013] [Indexed: 12/28/2022] Open
Abstract
Nephritis represents a frequent, severe complication of systemic lupus erythematosus. Autoantibodies appear to be fundamental in the pathogenesis of lupus nephritis. Several hypotheses are currently experimentally tested to further elucidate the direct induction of inflammation through interaction of the pathological autoantibodies with intrinsic glomerular components and the triggering of a complement-driven autoinflammatory cascade. B-cells have, in the last decade, emerged as a promising new therapeutic target, as biological treatments successfully attempting B-cell depletion, inhibition of B-cell proliferation and differentiation, or modulation of B-cell function have become bioengineered. Clinical trials have so far proved controversial regarding the efficacy of these new agents. Thus, despite the short and long-term side effects associated with immunosuppressive treatment alternative emerging treatments are still regarded "rescue" regimens in refractory patients. In an effort to accurately evaluate the potential of these therapies in lupus nephritis, several issues have been raised mainly in terms of patient selection criteria and trial duration. This review aims to expand on the proposed pathophysiologic mechanisms implicating the B-cell pathway in the pathogenesis of lupus nephritis and summarize current knowledge obtained from clinical trials introducing these biologics in its treatment. Finally, it will elaborate on potential applications of currently available biologic agents and forthcoming treatment options.
Collapse
|
27
|
The constant region affects antigen binding of antibodies to DNA by altering secondary structure. Mol Immunol 2013; 56:28-37. [PMID: 23665381 DOI: 10.1016/j.molimm.2013.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 11/23/2022]
Abstract
We previously demonstrated an important role of the constant region in the pathogenicity of anti-DNA antibodies. To determine the mechanisms by which the constant region affects autoantibody binding, a panel of isotype-switch variants (IgG1, IgG2a, IgG2b) was generated from the murine PL9-11 IgG3 autoantibody. The affinity of the PL9-11 antibody panel for histone was measured by surface plasmon resonance (SPR). Tryptophan fluorescence was used to determine wavelength shifts of the antibody panel upon binding to DNA and histone. Finally, circular dichroism spectroscopy was used to measure changes in secondary structure. SPR analysis revealed significant differences in histone binding affinity between members of the PL9-11 panel. The wavelength shifts of tryptophan fluorescence emission were found to be dependent on the antibody isotype, while circular dichroism analysis determined that changes in antibody secondary structure content differed between isotypes upon antigen binding. Thus, the antigen binding affinity is dependent on the particular constant region expressed. Moreover, the effects of antibody binding to antigen were also constant region dependent. Alteration of secondary structures influenced by constant regions may explain differences in fine specificity of anti-DNA antibodies between antibodies with similar variable regions, as well as cross-reactivity of anti-DNA antibodies with non-DNA antigens.
Collapse
|