1
|
Weisbrod L, Capriotti L, Hofmann M, Spieler V, Dersch H, Voedisch B, Schmidt P, Knake S. FASTMAP-a flexible and scalable immunopeptidomics pipeline for HLA- and antigen-specific T-cell epitope mapping based on artificial antigen-presenting cells. Front Immunol 2024; 15:1386160. [PMID: 38779658 PMCID: PMC11109385 DOI: 10.3389/fimmu.2024.1386160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
The study of peptide repertoires presented by major histocompatibility complex (MHC) molecules and the identification of potential T-cell epitopes contribute to a multitude of immunopeptidome-based treatment approaches. Epitope mapping is essential for the development of promising epitope-based approaches in vaccination as well as for innovative therapeutics for autoimmune diseases, infectious diseases, and cancer. It also plays a critical role in the immunogenicity assessment of protein therapeutics with regard to safety and efficacy concerns. The main challenge emerges from the highly polymorphic nature of the human leukocyte antigen (HLA) molecules leading to the requirement of a peptide mapping strategy for a single HLA allele. As many autoimmune diseases are linked to at least one specific antigen, we established FASTMAP, an innovative strategy to transiently co-transfect a single HLA allele combined with a disease-specific antigen into a human cell line. This approach allows the specific identification of HLA-bound peptides using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Using FASTMAP, we found a comparable spectrum of endogenous peptides presented by the most frequently expressed HLA alleles in the world's population compared to what has been described in literature. To ensure a reliable peptide mapping workflow, we combined the HLA alleles with well-known human model antigens like coagulation factor VIII, acetylcholine receptor subunit alpha, protein structures of the SARS-CoV-2 virus, and myelin basic protein. Using these model antigens, we have been able to identify a broad range of peptides that are in line with already published and in silico predicted T-cell epitopes of the specific HLA/model antigen combination. The transient co-expression of a single affinity-tagged MHC molecule combined with a disease-specific antigen in a human cell line in our FASTMAP pipeline provides the opportunity to identify potential T-cell epitopes/endogenously processed MHC-bound peptides in a very cost-effective, fast, and customizable system with high-throughput potential.
Collapse
Affiliation(s)
- Luisa Weisbrod
- Recombinant Protein Discovery, CSL Innovation GmbH, Marburg, Germany
| | - Luigi Capriotti
- Analytical Biochemistry, Research and Development, CSL Behring AG, Bern, Switzerland
| | - Marco Hofmann
- Recombinant Protein Discovery, CSL Innovation GmbH, Marburg, Germany
| | - Valerie Spieler
- Recombinant Protein Discovery, CSL Innovation GmbH, Marburg, Germany
| | - Herbert Dersch
- Recombinant Protein Discovery, CSL Innovation GmbH, Marburg, Germany
| | - Bernd Voedisch
- Recombinant Protein Discovery, CSL Innovation GmbH, Marburg, Germany
| | - Peter Schmidt
- Protein Biochemistry, Bio21 Institute, CSL Limited, Parkville, VIC, Australia
| | - Susanne Knake
- Department of Neurology, Epilepsy Center Hessen, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
2
|
Rickettsia Vaccine Candidate pVAX1-OmpB24 Stimulates TCD4+INF-γ+ and TCD8+INF-γ+ Lymphocytes in Autologous Co-Culture of Human Cells. Vaccines (Basel) 2023; 11:vaccines11010173. [PMID: 36680017 PMCID: PMC9865178 DOI: 10.3390/vaccines11010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND In recent years, promising vaccination strategies against rickettsiosis have been described in experimental animal models and human cells. OmpB is considered an immunodominant antigen that is recognized by T and B cells. The aim of this study was to identify TCD4+INF-γ+ and TCD8+INF-γ+ lymphocytes in an autologous system with macrophages transfected with the vaccine candidate pVAX1-OmpB24. Lymphocytes and monocytes from 14 patients with Rickettsia were isolated from whole blood. Monocytes were differentiated into macrophages and transfected with the plasmid pVAX1-OmpB24 pVax1. Isolated lymphocytes were cultured with transfected macrophages. IFN-γ-producing TCD4+ and TCD8+ lymphocyte subpopulations were identified by flow cytometry, as was the percentage of macrophages expressing CD40+, CD80+, HLA-I and HLA-II. Also, we analyzed the exhausted condition of the T lymphocyte subpopulation by PD1 expression. Macrophages transfected with pVAX1-OmpB24 stimulated TCD4+INF-γ+ cells in healthy subjects and patients infected with R. typhi. Macrophages stimulated TCD8+INF-γ+ cells in healthy subjects and patients infected with R. rickettsii and R. felis. Cells from healthy donors stimulated with OmpB-24 showed a higher percentage of TCD4+PD1+. Cells from patients infected with R. rickettsii had a higher percentage of TCD8+PD-1+, and for those infected with R. typhi the larger number of cells corresponded to TCD4+PD1+. Human macrophages transfected with pVAX1-OmpB24 activated TCD4+IFN-γ+ and CD8+IFN-γ+ in patients infected with different Rickettsia species. However, PD1 expression played an important role in the inhibition of T lymphocytes with R. felis.
Collapse
|
3
|
Simhadri VL, Hopkins L, McGill JR, Duke BR, Mukherjee S, Zhang K, Sauna ZE. Cas9-derived peptides presented by MHC Class II that elicit proliferation of CD4 + T-cells. Nat Commun 2021; 12:5090. [PMID: 34429421 PMCID: PMC8384835 DOI: 10.1038/s41467-021-25414-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/09/2021] [Indexed: 11/09/2022] Open
Abstract
CRISPR-Cas9 mediated genome editing offers unprecedented opportunities for treating human diseases. There are several reports that demonstrate pre-existing immune responses to Cas9 which may have implications for clinical development of CRISPR-Cas9 mediated gene therapy. Here we use 209 overlapping peptides that span the entire sequence of Staphylococcus aureus Cas9 (SaCas9) and human peripheral blood mononuclear cells (PBMCs) from a cohort of donors with a distribution of Major Histocompatibility Complex (MHC) alleles comparable to that in the North American (NA) population to identify the immunodominant regions of the SaCas9 protein. We also use an MHC Associated Peptide Proteomics (MAPPs) assay to identify SaCas9 peptides presented by MHC Class II (MHC-II) proteins on dendritic cells. Using these two data sets we identify 22 SaCas9 peptides that are both presented by MHC-II proteins and stimulate CD4+ T-cells.
Collapse
Affiliation(s)
- Vijaya L Simhadri
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Louis Hopkins
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Joseph R McGill
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | | | | | | | - Zuben E Sauna
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
4
|
Peptides identified on monocyte-derived dendritic cells: a marker for clinical immunogenicity to FVIII products. Blood Adv 2020; 3:1429-1440. [PMID: 31053570 DOI: 10.1182/bloodadvances.2018030452] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/18/2019] [Indexed: 12/14/2022] Open
Abstract
The immunogenicity of protein therapeutics is an important safety and efficacy concern during drug development and regulation. Strategies to identify individuals and subpopulations at risk for an undesirable immune response represent an important unmet need. The major histocompatibility complex (MHC)-associated peptide proteomics (MAPPs) assay directly identifies the presence of peptides derived from a specific protein therapeutic on a donor's MHC class II (MHC-II) proteins. We applied this technique to address several questions related to the use of factor VIII (FVIII) replacement therapy in the treatment of hemophilia A (HA). Although >12 FVIII therapeutics are marketed, most fall into 3 categories: (i) human plasma-derived FVIII (pdFVIII), (ii) full-length (FL)-recombinant FVIII (rFVIII; FL-rFVIII), and (iii) B-domain-deleted rFVIII. Here, we investigated whether there are differences between the FVIII peptides found on the MHC-II proteins of the same individual when incubated with these 3 classes. Based on several observational studies and a prospective, randomized, clinical trial showing that the originally approved rFVIII products may be more immunogenic than the pdFVIII products containing von Willebrand factor (VWF) in molar excess, it has been hypothesized that the pdFVIII molecules yield/present fewer peptides (ie, potential T-cell epitopes). We have experimentally tested this hypothesis and found that dendritic cells from HA patients and healthy donors present fewer FVIII peptides when administered pdFVIII vs FL-rFVIII, despite both containing the same molar VWF excess. Our results support the hypothesis that synthesis of pdFVIII under physiological conditions could result in reduced heterogeneity and/or subtle differences in structure/conformation which, in turn, may result in reduced FVIII proteolytic processing relative to FL-rFVIII.
Collapse
|
5
|
Diego VP, Luu BW, Hofmann M, Dinh LV, Almeida M, Powell JS, Rajalingam R, Peralta JM, Kumar S, Curran JE, Sauna ZE, Kellerman R, Park Y, Key NS, Escobar MA, Huynh H, Verhagen AM, Williams-Blangero S, Lehmann PV, Maraskovsky E, Blangero J, Howard TE. Quantitative HLA-class-II/factor VIII (FVIII) peptidomic variation in dendritic cells correlates with the immunogenic potential of therapeutic FVIII proteins in hemophilia A. J Thromb Haemost 2020; 18:201-216. [PMID: 31556206 DOI: 10.1111/jth.14647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Plasma-derived (pd) or recombinant (r) therapeutic factor VIII proteins (FVIIIs) are infused to arrest/prevent bleeding in patients with hemophilia A (PWHA). However, FVIIIs are neutralized if anti-FVIII-antibodies (inhibitors) develop. Accumulating evidence suggests that pdFVIIIs with von Willebrand factor (VWF) are less immunogenic than rFVIIIs and that distinct rFVIIIs are differentially immunogenic. Since inhibitor development is T-helper-cell-dependent, human leukocyte antigen (HLA)-class-II (HLAcII) molecules constitute an important early determinant. OBJECTIVES Use dendritic cell (DC)-protein processing/presentation assays with mass-spectrometric and peptide-proteomic analyses to quantify the DP-bound, DQ-bound, and DR-bound FVIII-derived peptides in individual HLAcII repertoires and compare the immunogenic potential of six distinct FVIIIs based on their measured peptide counts. PATIENTS/METHODS Monocyte-derived DCs from normal donors and/or PWHA were cultured with either: Mix-rFVIII, a VWF-free equimolar mixture of a full-length (FL)-rFVIII [Advate® (Takeda)] and four distinct B-domain-deleted (BDD)-rFVIIIs [Xyntha® (Pfizer), NovoEight® (Novo-Nordisk), Nuwiq® (Octapharma), and Afstyla® (CSL Behring GmBH)]; a pdFVIII + pdVWF [Beriate® (CSL Behring GmBH)]; Advate ± pdVWF; Afstyla ± pdVWF; and Xyntha + pdVWF. RESULTS We showed that (i) Beriate had a significantly lower immunogenic potential than Advate ± pdVWF, Afstyla - pdVWF, and Mix-rFVIII; (ii) distinct FVIIIs differed significantly in their immunogenic potential in that, in addition to (i), Afstyla + pdVWF had a significantly lower immunogenic potential than Beriate, while the immunogenic potential of Beriate was not significantly different from that of Xyntha + pdVWF; and (iii) rFVIIIs with pdVWF had significantly lower immunogenic potentials than the same rFVIIIs without pdVWF. CONCLUSIONS Our results provide HLAcII peptidomic level explanations for several important clinical observations/issues including the differential immunogenicity of distinct FVIIIs and the role of HLAcII genetics in inhibitor development.
Collapse
Affiliation(s)
- Vincent P Diego
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, Texas
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas
| | - Bernadette W Luu
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, Texas
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas
- Haplogenics Corporation, Brownsville, Texas
| | | | | | - Marcio Almeida
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, Texas
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas
| | | | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, Department of Surgery, School of Medicine, University of California at San Francisco, California
| | - Juan M Peralta
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, Texas
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas
| | - Satish Kumar
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, Texas
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas
| | - Joanne E Curran
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, Texas
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas
| | - Zuben E Sauna
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapeutics, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Roberta Kellerman
- Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, North Carolina
| | - Yara Park
- Department of Laboratory Medicine and Pathology, University of North Carolina at Chapel Hill, North Carolina
| | - Nigel S Key
- Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, North Carolina
- Department of Laboratory Medicine and Pathology, University of North Carolina at Chapel Hill, North Carolina
| | - Miguel A Escobar
- Division of Hematology, Department of Medicine, McGovern School of Medicine, University of Texas Health Sciences Center at Houston, Texas
| | - Huy Huynh
- CSL Limited Research, Bio21 Institute, Melbourne, Australia
| | | | - Sarah Williams-Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, Texas
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas
| | - Paul V Lehmann
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Cellular Technology Ltd, Shaker Heights, Ohio
| | | | - John Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, Texas
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas
| | - Tom E Howard
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, Texas
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas
- Haplogenics Corporation, Brownsville, Texas
- Department of Pathology and Lab Medicine, VA Valley Coastal Bend Healthcare Center, Harlingen, Texas
| |
Collapse
|
6
|
Costa-García M, Ataya M, Moraru M, Vilches C, López-Botet M, Muntasell A. Human Cytomegalovirus Antigen Presentation by HLA-DR+ NKG2C+ Adaptive NK Cells Specifically Activates Polyfunctional Effector Memory CD4+ T Lymphocytes. Front Immunol 2019; 10:687. [PMID: 31001281 PMCID: PMC6456717 DOI: 10.3389/fimmu.2019.00687] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/13/2019] [Indexed: 12/27/2022] Open
Abstract
Natural killer (NK) cells play a dual role in the defense against viral pathogens by directly lysing infected cells as well as by regulating anti-viral T cell immunity. Infection by human cytomegalovirus (HCMV) promotes a persistent expansion of NKG2C+ adaptive NK cells which have been shown to display enhanced antibody-dependent responses against infected targets and associated to viral control in transplanted patients. Based on gene expression data showing increased transcription of CIITA and several genes related to the MHC class II pathway in adaptive NK cells, we explored their putative capacity for antigen presentation to CD4+ T cells. Phenotypic analysis confirmed a preferential steady-state expression of HLA-DR by circulating NKG2C+ adaptive NK cells in healthy individuals. Expression of HLA-DR in NKG2C+ adaptive NK cells was variable and unrelated to the expression of activation (i.e., CD69 and CD25) or differentiation (i.e., FcRγ chain, CD57) markers, remaining stable over time at the individual level. Incubation of purified NK cells with HCMV complexed with serum specific antibodies induced an up-regulation of surface HLA-DR concomitant to CD16 loss whereas no changes in CD80/CD86 co-stimulatory ligands were detected. In addition, surface CX3CR1 decreased upon antigen-loading while HLA-DR+ NK cells maintained a CCR7-, CXCR3low homing profile. Remarkably, HCMV-loaded purified NK cells activated autologous CD4+ T cells in an HLA-DR dependent manner. The fraction of T lymphocytes activated by antigen-loaded NK cells was smaller than that stimulated by monocyte-derived dendritic cells, corresponding to CD28-negative effector-memory CD4+ T cells with cytotoxic potential. Antigen presentation by NK cells activated a polyfunctional CD4+ T cell response characterized by degranulation (CD107a) and the secretion of Th1 cytokines (IFNγ and TNFα). Overall, our data discloses the capacity of NKG2C+ adaptive NK cells to process and present HCMV antigens to memory CD4+ cytotoxic T cells, directly regulating their response to the viral infection.
Collapse
Affiliation(s)
- Marcel Costa-García
- Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Michelle Ataya
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Manuela Moraru
- Immunogenetics and HLA Laboratory, Instituto Hospital Universitario Puerta de Hierro, Majadahonda, Spain
| | - Carlos Vilches
- Immunogenetics and HLA Laboratory, Instituto Hospital Universitario Puerta de Hierro, Majadahonda, Spain
| | - Miguel López-Botet
- Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| |
Collapse
|
7
|
Abana CO, Pilkinton MA, Gaudieri S, Chopra A, McDonnell WJ, Wanjalla C, Barnett L, Gangula R, Hager C, Jung DK, Engelhardt BG, Jagasia MH, Klenerman P, Phillips EJ, Koelle DM, Kalams SA, Mallal SA. Cytomegalovirus (CMV) Epitope-Specific CD4 + T Cells Are Inflated in HIV + CMV + Subjects. THE JOURNAL OF IMMUNOLOGY 2017; 199:3187-3201. [PMID: 28972094 DOI: 10.4049/jimmunol.1700851] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/28/2017] [Indexed: 01/24/2023]
Abstract
Select CMV epitopes drive life-long CD8+ T cell memory inflation, but the extent of CD4 memory inflation is poorly studied. CD4+ T cells specific for human CMV (HCMV) are elevated in HIV+ HCMV+ subjects. To determine whether HCMV epitope-specific CD4+ T cell memory inflation occurs during HIV infection, we used HLA-DR7 (DRB1*07:01) tetramers loaded with the glycoprotein B DYSNTHSTRYV (DYS) epitope to characterize circulating CD4+ T cells in coinfected HLA-DR7+ long-term nonprogressor HIV subjects with undetectable HCMV plasma viremia. DYS-specific CD4+ T cells were inflated among these HIV+ subjects compared with those from an HIV- HCMV+ HLA-DR7+ cohort or with HLA-DR7-restricted CD4+ T cells from the HIV-coinfected cohort that were specific for epitopes of HCMV phosphoprotein-65, tetanus toxoid precursor, EBV nuclear Ag 2, or HIV gag protein. Inflated DYS-specific CD4+ T cells consisted of effector memory or effector memory-RA+ subsets with restricted TCRβ usage and nearly monoclonal CDR3 containing novel conserved amino acids. Expression of this near-monoclonal TCR in a Jurkat cell-transfection system validated fine DYS specificity. Inflated cells were polyfunctional, not senescent, and displayed high ex vivo levels of granzyme B, CX3CR1, CD38, or HLA-DR but less often coexpressed CD38+ and HLA-DR+ The inflation mechanism did not involve apoptosis suppression, increased proliferation, or HIV gag cross-reactivity. Instead, the findings suggest that intermittent or chronic expression of epitopes, such as DYS, drive inflation of activated CD4+ T cells that home to endothelial cells and have the potential to mediate cytotoxicity and vascular disease.
Collapse
Affiliation(s)
- Chike O Abana
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Mark A Pilkinton
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Silvana Gaudieri
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232.,School of Human Sciences, University of Western Australia, Perth, Western Australia 6009, Australia.,Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Wyatt J McDonnell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Celestine Wanjalla
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Louise Barnett
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Rama Gangula
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Cindy Hager
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Dae K Jung
- Stem Cell Transplantation, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Brian G Engelhardt
- Stem Cell Transplantation, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Madan H Jagasia
- Stem Cell Transplantation, Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, United Kingdom; and
| | - Elizabeth J Phillips
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232.,Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - David M Koelle
- Department of Medicine, Laboratory Medicine, and Global Health, University of Washington, Seattle, WA 98195
| | - Spyros A Kalams
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Simon A Mallal
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232; .,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232.,Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
8
|
Muraro E, Merlo A, Martorelli D, Cangemi M, Dalla Santa S, Dolcetti R, Rosato A. Fighting Viral Infections and Virus-Driven Tumors with Cytotoxic CD4 + T Cells. Front Immunol 2017; 8:197. [PMID: 28289418 PMCID: PMC5327441 DOI: 10.3389/fimmu.2017.00197] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/09/2017] [Indexed: 12/18/2022] Open
Abstract
CD4+ T cells have been and are still largely regarded as the orchestrators of immune responses, being able to differentiate into distinct T helper cell populations based on differentiation signals, transcription factor expression, cytokine secretion, and specific functions. Nonetheless, a growing body of evidence indicates that CD4+ T cells can also exert a direct effector activity, which depends on intrinsic cytotoxic properties acquired and carried out along with the evolution of several pathogenic infections. The relevant role of CD4+ T cell lytic features in the control of such infectious conditions also leads to their exploitation as a new immunotherapeutic approach. This review aims at summarizing currently available data about functional and therapeutic relevance of cytotoxic CD4+ T cells in the context of viral infections and virus-driven tumors.
Collapse
Affiliation(s)
- Elena Muraro
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
| | - Anna Merlo
- Department of Immunology and Blood Transfusions, San Bortolo Hospital, Vicenza, Italy
| | - Debora Martorelli
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
| | - Michela Cangemi
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
| | | | - Riccardo Dolcetti
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
- Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Antonio Rosato
- Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padova, Padova, Italy
| |
Collapse
|
9
|
AAV capsid CD8+ T-cell epitopes are highly conserved across AAV serotypes. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:15029. [PMID: 26445723 PMCID: PMC4588448 DOI: 10.1038/mtm.2015.29] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 07/20/2015] [Indexed: 01/04/2023]
Abstract
Adeno-associated virus (AAV) has become one of the most promising vectors in gene transfer in the last 10 years with successful translation to clinical trials in humans and even market approval for a first gene therapy product in Europe. Administration to humans, however, revealed that adaptive immune responses against the vector capsid can present an obstacle to sustained transgene expression due to the activation and expansion of capsid-specific T cells. The limited number of peripheral blood mononuclear cells (PBMCs) obtained from samples within clinical trials allows for little more than monitoring of T-cell responses. We were able to identify immunodominant major histocompatibility complex (MHC) class I epitopes for common human leukocyte antigen (HLA) types by using spleens isolated from subjects undergoing splenectomy for non-malignant indications as a source of large numbers of lymphocytes and restimulating them with single AAV capsid peptides in vitro. Further experiments confirmed that these epitopes are naturally processed and functionally relevant. The design of more effective and less immunogenic AAV vectors, and precise immune monitoring of vector-infused subjects, are facilitated by these findings.
Collapse
|
10
|
Pachnio A, Zuo J, Ryan GB, Begum J, Moss PAH. The Cellular Localization of Human Cytomegalovirus Glycoprotein Expression Greatly Influences the Frequency and Functional Phenotype of Specific CD4+ T Cell Responses. THE JOURNAL OF IMMUNOLOGY 2015; 195:3803-15. [PMID: 26363059 PMCID: PMC4592104 DOI: 10.4049/jimmunol.1500696] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/04/2015] [Indexed: 11/19/2022]
Abstract
CMV infection is a significant cause of morbidity and mortality in immunocompromised individuals, and the development of a vaccine is of high priority. Glycoprotein B (gB) is a leading vaccine candidate but the glycoprotein H (gH) pentameric complex is now recognized as the major target for neutralizing Abs. However, little is known about the T cell immune response against gH and glycoprotein L (gL) and this is likely to be an important attribute for vaccine immunogenicity. In this study, we examine and contrast the magnitude and phenotype of the T cell immune response against gB, gH, and gL within healthy donors. gB-specific CD4(+) T cells were found in 95% of donors, and 29 epitopes were defined with gB-specific response sizes ranging from 0.02 to 2.88% of the CD4(+) T cell pool. In contrast, only 20% of donors exhibited a T cell response against gH or gL. Additionally, gB-specific CD4(+) T cells exhibited a more cytotoxic phenotype, with high levels of granzyme B expression. Glycoproteins were effectively presented following delivery to APCs but only gB-derived epitopes were presented following endogenous synthesis. gB expression was observed exclusively within vesicular structures colocalizing with HLA-DM whereas gH was distributed evenly throughout the cytoplasm. Grafting of the C-terminal domain from gB onto gH could not transfer this pattern of presentation. These results reveal that gB is a uniquely immunogenic CMV glycoprotein and this is likely to reflect its unique pattern of endogenous Ag presentation. Consideration may be required toward mechanisms that boost cellular immunity to gH and gL within future subunit vaccines.
Collapse
Affiliation(s)
- Annette Pachnio
- School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Jianmin Zuo
- School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Gordon B Ryan
- School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Jusnara Begum
- School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Paul A H Moss
- School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, United Kingdom; and University Hospitals Birmingham National Health Service Foundation Trust, Birmingham B15 2TH, United Kingdom
| |
Collapse
|