1
|
Hu CF, Liao XY, Xu DD, Ruan YB, Gao FG. K48-Linked Ubiquitination Contributes to Nicotine-Augmented Bone Marrow-Derived Dendritic-Cell-Mediated Adaptive Immunity. Vaccines (Basel) 2021; 9:vaccines9030278. [PMID: 33808531 PMCID: PMC8003133 DOI: 10.3390/vaccines9030278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 01/23/2023] Open
Abstract
K48-linked ubiquitination determining antigen degradation and the endosomal recruitments of p97 and Sec61 plays vital roles in dendritic cell (DC) cross-presentation. Our previous studies revealed that nicotine treatment increases bone marrow-derived dendritic cell (BM-DC) cross-presentation and promotes BM-DC-based cytotoxic T lymphocyte (CTL) priming. But the effect of nicotine on K48-linked ubiquitination and the mechanism of nicotine-increased BM-DC cross-presentation are still uncertain. In this study, we first demonstrated that ex vivo nicotine administration obviously increased K48-linked ubiquitination in BM-DC. Then, we found that K48-linked ubiquitination was essential for nicotine-augmented cross-presentation, BM-DC-based CTL priming, and thereby the superior cytolytic capacity of DC-activated CTL. Importantly, K48-linked ubiquitination was verified to be necessary for nicotine-augmented endosomal recruitments of p97 and Sec61. Importantly, mannose receptor (MR), which is an important antigenic receptor for cross-presentation, was exactly catalyzed with K48-linked ubiquitination by the treatment with nicotine. Thus, these data suggested that K48-linked ubiquitination contributes to the superior adaptive immunity of nicotine-administrated BM-DC. Regulating K48-linked ubiquitination might have therapeutic potential for DC-mediated immune therapy.
Collapse
Affiliation(s)
- Chun Fang Hu
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China; (C.F.H.); (X.Y.L.); (D.D.X.)
| | - Xiao Yan Liao
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China; (C.F.H.); (X.Y.L.); (D.D.X.)
| | - Dan Dan Xu
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China; (C.F.H.); (X.Y.L.); (D.D.X.)
| | - Yi Bin Ruan
- Technology Center, China Tobacco Guizhou Industrial Co., Ltd., Guiyang 550003, China
- Correspondence: (Y.B.R.); (F.G.G.)
| | - Feng Guang Gao
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China; (C.F.H.); (X.Y.L.); (D.D.X.)
- Correspondence: (Y.B.R.); (F.G.G.)
| |
Collapse
|
2
|
Sui HX, Ke SZ, Xu DD, Lu NN, Wang YN, Zhang YH, Gao FG. Nicotine induces TIPE2 upregulation and Stat3 phosphorylation contributes to cholinergic anti-inflammatory effect. Int J Oncol 2017; 51:987-995. [PMID: 28766689 DOI: 10.3892/ijo.2017.4080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/24/2017] [Indexed: 11/06/2022] Open
Abstract
Cholinergic anti-inflammatory pathway has therapeutic effect on inflammation-associated diseases. However, the exact mechanism of nicotine-mediated anti-inflammatory effect is still unclear. TIPE2, a new member of tumor necrosis factor-α-induced protein-8 family, is a negative regulator of immune homeostasis. However, the roles of TIPE2 in cholinergic anti-inflammatory effect are still uncertain. Here, we demonstrated that nicotine exerts its anti-inflammatory effect by TIPE2 upregulation and phosphorylated stat3 mediated the inhibition of NF-κB activation, which was supported by the following evidence: firstly, both nicotine and TIPE2 inhibit pro-inflammatory cytokine release via NF-κB inactivation. Secondly, nicotine upregulates TIPE2 expression via α7 nicotinic acetylcholine receptor. Moreover, the enhancement of stat3 phosphorylation and decrease of LPS-induced p65 translocation were achieved by nicotine treatment. Importantly, nicotine treatment augments the interaction of phosphorylated stat3 and p65, indicating that the inhibitory effect of nicotine on NF-κB activation was mediated with protein-protein interactions. Hence, this study revealed that TIPE2 upregulation and stat3 phosphorylation contribute to nicotine-mediated anti-inflammation effect, indicating that TIPE2 and stat3 might be potential molecules for dealing with inflammation-associated diseases.
Collapse
Affiliation(s)
- Hua Xiu Sui
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Shi Zhong Ke
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Dan Dan Xu
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Nan Nan Lu
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Yi Nan Wang
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Yue Hua Zhang
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Feng Guang Gao
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361102, P.R. China
| |
Collapse
|
3
|
Wang YY, Hu CF, Li J, You X, Gao FG. Increased translocation of antigens to endosomes and TLR4 mediated endosomal recruitment of TAP contribute to nicotine augmented cross-presentation. Oncotarget 2016; 7:38451-38466. [PMID: 27224911 PMCID: PMC5122403 DOI: 10.18632/oncotarget.9498] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/02/2016] [Indexed: 01/07/2023] Open
Abstract
Cross-presentation by dendritic cells (DCs) requires surface molecules such as lectin, CD40, langerin, heat shock protein, mannose receptor, mediated endocytosis, the endosomal translocation of internalized antigen, and the relocation of transporter associated with antigen processing (TAP). Although the activation of α7 nicotinic acetylcholine receptor (α7 nAchR) up-regulate surface molecule expression, augment endocytosis, and enhance cross-presentation, the molecular mechanism of α7 nAchR activation-increased cross-presentation is still poorly understood. In this study, we investigated the role of mannose receptor in nicotine-increased cross-presentation and the mechanism that endotoxins orchestrating the recruitment of TAP toward endosomes. We demonstrated that nicotine increase the expressiones of mannose receptor and Toll-like receptor 4 (TLR4) via PI3K-Akt-mTOR-p70S6 pathway. Both endosomal translocation of mannose receptor-internalized antigens and TLR4 sig- naling are necessary for nicotine-augmented cross-presentation and cross-priming. Importantly, the recruitment of TAP toward endosomes via TLR4-MyD88-IRAK4 signaling contributes to nicotine-increased cross-presentation and cross-activation of T cells. Thus, these data suggest that increased recruitment of TAP to Ag-containing vesicles contributes to the superior cross-presentation efficacy of α7 nAchR activated DCs.
Collapse
Affiliation(s)
- Yan Yan Wang
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, People's Republic of China
| | - Chun Fang Hu
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, People's Republic of China
| | - Juan Li
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, People's Republic of China
| | - Xiang You
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, People's Republic of China
| | - Feng Guang Gao
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Shang Hai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
4
|
HU CHUNFANG, HUANG YIYING, WANG YONGJIE, GAO FENGGUANG. Upregulation of ABCG2 via the PI3K-Akt pathway contributes to acidic microenvironment-induced cisplatin resistance in A549 and LTEP-a-2 lung cancer cells. Oncol Rep 2016; 36:455-61. [DOI: 10.3892/or.2016.4827] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/17/2016] [Indexed: 11/06/2022] Open
|
5
|
Ex vivo nicotine stimulation augments the efficacy of human peripheral blood mononuclear cell-derived dendritic cell vaccination via activating Akt-S6 pathway. Anal Cell Pathol (Amst) 2015; 2015:741487. [PMID: 26351626 PMCID: PMC4550800 DOI: 10.1155/2015/741487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/10/2015] [Accepted: 06/18/2015] [Indexed: 01/12/2023] Open
Abstract
Our previous studies showed that α7 nicotinic acetylcholine receptor (nAchR) agonist nicotine has stimulatory effects on murine bone marrow-derived semimature DCs, but the effect of nicotine on peripheral blood mononuclear cell- (PBMC-) derived human semimature dendritic cells (hu-imDCs) is still to be clarified. In the present study, hu-imDCs (cultured 4 days) were conferred with ex vivo lower dose nicotine stimulation and the effect of nicotine on surface molecules expression, the ability of cross-presentation, DCs-mediated PBMC priming, and activated signaling pathways were determined. We could demonstrate that the treatment with nicotine resulted in increased surface molecules expression, enhanced hu-imDCs-mediated PBMC proliferation, upregulated release of IL-12 in the supernatant of cocultured DCs-PBMC, and augmented phosphorylation of Akt and ribosomal protein S6. Nicotine associated with traces of LPS efficiently enhanced endosomal translocation of internalized ovalbumin (OVA) and increased TAP-OVA colocalization. Importantly, the upregulation of nicotine-increased surface molecules upregulation was significantly abrogated by the inhibition of Akt kinase. These findings demonstrate that ex vivo nicotine stimulation augments hu-imDCs surface molecules expression via Akt-S6 pathway, combined with increased Ag-presentation result in augmented efficacy of DCs-mediated PBMC proliferation and Th1 polarization.
Collapse
|
6
|
Zhang YH, Yan HQ, Wang F, Wang YY, Jiang YN, Wang YN, Gao FG. TIPE2 inhibits TNF-α-induced hepatocellular carcinoma cell metastasis via Erk1/2 downregulation and NF-κB activation. Int J Oncol 2014; 46:254-64. [PMID: 25339267 DOI: 10.3892/ijo.2014.2725] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/18/2014] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor-α-induced protein 8-like 2 (TNFAIP8L2, TIPE2), which belongs to the TNF-α-induced protein 8 family, is a negative regulator of immune homeostasis. Although pro-inflammatory cytokines such as TNF-α have been reported to be involved in liver carcinoma metastasis, the effect of TIPE2 on hepatocellular carcinoma metastasis remains unknown. We demonstrate that TNF-α clearly augments MMP-13/MMP-3 expression and promotes cell migration in HepG2 cells through activation of the Erk1/2-NF-κB pathways. Interestingly, in addition to human PBLs, macrophages and fibroblasts, liver cancer cells specifically express TNF-α following LPS treatment. Most importantly, TIPE2 overexpression efficiently abrogates the effects of LPS on TNF-α secretion and abolishes the effects of TNF-α on MMP-13/MMP-3 upregulation, cell migration and Erk1/2-NF-κB activation. Taken together, these findings demonstrate that TIPE2 was able to suppress TNF-α-induced hepatocellular carcinoma metastasis by inhibiting Erk1/2 and NF-κB activation, indicating that both TNF-α and TIPE2 might be potential targets for the treatment of HCC metastasis.
Collapse
Affiliation(s)
- Yue Hua Zhang
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen 361005, P.R. China
| | - Hong Qiong Yan
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen 361005, P.R. China
| | - Fang Wang
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen 361005, P.R. China
| | - Yan Yan Wang
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen 361005, P.R. China
| | - Yi Na Jiang
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen 361005, P.R. China
| | - Yi Nan Wang
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen 361005, P.R. China
| | - Feng Guang Gao
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen 361005, P.R. China
| |
Collapse
|
7
|
Yan HQ, Huang XB, Ke SZ, Jiang YN, Zhang YH, Wang YN, Li J, Gao FG. Interleukin 6 augments lung cancer chemotherapeutic resistance via ataxia-telangiectasia mutated/NF-kappaB pathway activation. Cancer Sci 2014; 105:1220-7. [PMID: 24988892 PMCID: PMC4462389 DOI: 10.1111/cas.12478] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/13/2014] [Accepted: 06/27/2014] [Indexed: 12/25/2022] Open
Abstract
Although it is known that ataxia-telangiectasia mutated (ATM) and interleukin 6 (IL-6) contribute to multiple drug resistance (MDR) in tumor chemotherapy, the exact role of ATM activation in MDR resulting from increased IL-6 expression is still unclear. In the present study, we demonstrate that the activation of the ATM-NF-kappaB pathway, resulting from increased IL-6 expression, plays a central role in augmented chemoresistance in lung cancer cell lines. This result was supported by the increased expressions of Bcl-2, Mcl-1, Bcl-xl, and the upregulation of MDR-associated protein ABCG2. The higher level of IL-6 reveals not only higher ATM/NF-kappaB activity but also increased expressions of ABCG2, Bcl-2, Mcl-1 and Bcl-xl. Most importantly, lung cancer cells themselves upregulated IL-6 secretion by activating the p38/NF-kappaB pathway through treatment with cisplatin and camptothecin. Taken together, these findings demonstrate that chemotherapeutic agents increase IL-6 expression, hence activating the ATM/NF-kappaB pathway, augmenting anti-apoptotic protein expression and contributing to MDR. This indicates that both IL-6 and ATM are potential targets for the treatment of chemotherapeutic resistance in lung cancer.
Collapse
Affiliation(s)
- Hong Qiong Yan
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen UniversityXiamen, China
| | - Xiao Bo Huang
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen UniversityXiamen, China
| | - Shi Zhong Ke
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen UniversityXiamen, China
| | - Yi Na Jiang
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen UniversityXiamen, China
| | - Yue Hua Zhang
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen UniversityXiamen, China
| | - Yi Nan Wang
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen UniversityXiamen, China
| | - Juan Li
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen UniversityXiamen, China
| | - Feng Guang Gao
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen UniversityXiamen, China
- State Key Laboratory of Oncogenes and Related Genes, Shang Hai Jiao Tong UniversityShanghai, China
| |
Collapse
|
8
|
Wang F, Wang YY, Li J, You X, Qiu XH, Wang YN, Gao FG. Increased antigen presentation but impaired T cells priming after upregulation of interferon-beta induced by lipopolysaccharides is mediated by upregulation of B7H1 and GITRL. PLoS One 2014; 9:e105636. [PMID: 25144375 PMCID: PMC4140801 DOI: 10.1371/journal.pone.0105636] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/25/2014] [Indexed: 01/09/2023] Open
Abstract
Dendritic cells are able to present Ag-derived peptides on MHC class I and II molecules and induce T cells priming. Lipopolysaccharides (LPS), an activator of Toll-like 4 receptor (TLR4) signaling, has been demonstrated to facilitate Ag-presentation, up-regulate surface molecules expression but impair T cells priming. In this study, we investigated the effect of LPS on nicotine-enhanced DCs-dependent T cells priming and the mechanisms of LPS orchestrating the immunosuppressive program. We could demonstrate that the treatment with LPS resulted in increased surface molecules expression, enhanced Ag-presentation, up-regulated release of TGF-beta, TNF-alpha, IL-6, and IFN-beta. Concomititantly, the upregulation of IFN-beta in DCs induces the up-regulation of coinhibitory molecules B7H1 and GITRL, which cause an impaired activation of naïve Ag-specific T cells and the induction of T cell tolerance by enhancing B7H1-PD-1 interactions and promoting GITRL-GITL facilitated Treg generation, respectively. These data provide a mechanistic basis for the immunomodulatory action of IFN-beta which might open new possibilities in the development of therapeutic approaches aimed at the control of excessive immune response and persistent infection.
Collapse
Affiliation(s)
- Fang Wang
- Department of Immunology, Medical College, Xiamen University, Xiamen, China
- Department of Basic Medicine Science, NanYang Medical College, Nanyang, China
| | - Yan Yan Wang
- Department of Immunology, Medical College, Xiamen University, Xiamen, China
| | - Juan Li
- Department of Immunology, Medical College, Xiamen University, Xiamen, China
| | - Xiang You
- Department of Immunology, Medical College, Xiamen University, Xiamen, China
| | - Xin Hui Qiu
- Department of Immunology, Medical College, Xiamen University, Xiamen, China
| | - Yi Nan Wang
- Department of Immunology, Medical College, Xiamen University, Xiamen, China
| | - Feng Guang Gao
- Department of Immunology, Medical College, Xiamen University, Xiamen, China
- * E-mail:
| |
Collapse
|
9
|
XUE MAOQIANG, LIU XIAOXING, ZHANG YANLING, GAO FENGGUANG. Nicotine exerts neuroprotective effects against β-amyloid-induced neurotoxicity in SH-SY5Y cells through the Erk1/2-p38-JNK-dependent signaling pathway. Int J Mol Med 2014; 33:925-33. [DOI: 10.3892/ijmm.2014.1632] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/13/2014] [Indexed: 11/06/2022] Open
|
10
|
Wang YY, Liu Y, Ni XY, Bai ZH, Chen QY, Zhang Y, Gao FG. Nicotine promotes cell proliferation and induces resistance to cisplatin by α7 nicotinic acetylcholine receptor‑mediated activation in Raw264.7 and El4 cells. Oncol Rep 2013; 31:1480-8. [PMID: 24399025 DOI: 10.3892/or.2013.2962] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/19/2013] [Indexed: 11/05/2022] Open
Abstract
Although nicotine is a risk factor for carcinogenesis and atherosclerosis, epidemiological data indicate that nicotine has therapeutic benefits in treating Alzheimer's disease. Our previous studies also showed that nicotine-treated dendritic cells have potential antitumor effects. Hence, the precise effects of nicotine on the biological characterizations of cells are controversial. The aim of the present study was to assess the roles of α7 nicotinic acetylcholine receptors (nAChRs), Erk1/2-p38-JNK and PI3K-Akt pathway in nicotine-mediated proliferation and anti-apoptosis effects. The results firstly showed that nicotine treatment clearly augmented cell viability and upregulated PCNA expression in both Raw264.7 and El4 cells. Meanwhile, nicotine afforded protection against cisplatin-induced toxicity through inhibiting caspase-3 activation and upregulating anti-apoptotic protein expression. Further exploration demonstrated that nicotine efficiently abolished cisplatin-promoted mitochondria translocation of Bax and the release of cytochrome c. The pretreatment of α-bungarotoxin and tubocurarine chloride significantly attenuated nicotine-augmented cell viability, abolished caspase-3 activation and α7 nAChR upregulation. Both Erk-JNK-p38 and PI3K-Akt signaling pathways could be activated by nicotine treatment in Raw264.7 and El4 cells. Notably, when Erk-JNK and PI3K-Akt activities were inhibited, nicotine-augmented cell proliferation and anti-apoptotic effects were abolished accordingly. The results presented here indicate that nicotine could achieve α7 nAChR-mediated proliferation and anti-apoptotic effects by activating Erk-JNK and PI3K-Akt pathways respectively, providing potential therapeutic molecules to deal with smoking-associated human diseases.
Collapse
Affiliation(s)
- Yan Yan Wang
- Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Yao Liu
- Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Xiao Yan Ni
- Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Zhen Huan Bai
- Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Qiong Yun Chen
- Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Ye Zhang
- Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Feng Guang Gao
- Basic Medicine Science, Medical College, Xiamen University, Xiamen, Fujian 361005, P.R. China
| |
Collapse
|