1
|
Donelson CJH, Ghiringhelli Borsa N, Taylor AO, Smith RJH, Zhang Y. Functional evaluation of rare variants in complement factor I using a minigene assay. Front Immunol 2024; 15:1446081. [PMID: 39238643 PMCID: PMC11374653 DOI: 10.3389/fimmu.2024.1446081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
The regulatory serine protease, complement factor I (FI), in conjunction with one of its cofactors (FH, C4BP, MCP, or CR1), plays an essential role in controlling complement activity through inactivation of C3b and C4b. The functional impact by missense variants in the CFI gene, particularly those with minor allele frequencies of 0.01% to 0.1%, is infrequently studied. As such, these variants are typically classified as variants of uncertain significance (VUS) when they are identified by clinical testing. Herein, we utilized a minigene splicing assay to assess the functional impact of 36 ultra-rare variants of CFI. These variants were selected based on their minor allele frequencies (MAF) and their association with low-normal FI levels. Four variants lead to aberrant splicing-one 5' consensus splice site (NM_000204.5: c.1429G>C, p.Asp477His) and three exonic changes (c.355G>A, p.Gly119Arg; c.472G>A, p.Gly158Arg; and c.950G>A, p.Arg317Gln)-enabling their reclassification to likely pathogenic (LP) or pathogenic (P) based on ACMG guidelines. These findings underscore the value of functional assays, such as the minigene assay, in assessing the clinical relevance of rare variants in CFI.
Collapse
Affiliation(s)
| | | | | | - Richard J. H. Smith
- Molecular Otolaryngology and Renal Research Laboratory, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Yuzhou Zhang
- Molecular Otolaryngology and Renal Research Laboratory, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
2
|
Massey V, Nguyen CTE, François T, De Bruycker JJ, Bonnefoy A, Lapeyraque AL, Decaluwe H. CNS Inflammation as the First Sign of Complement Factor I Deficiency: A Severe Myelitis Treated With Intense Immunotherapy and Eculizumab. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200191. [PMID: 38134378 PMCID: PMC10751016 DOI: 10.1212/nxi.0000000000200191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/30/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVES Complement factor I (CFI) deficiency is a rare autosomal recessive inborn error of immunity. In this report, we highlight that complete CFI deficiency may present with isolated and severe CNS inflammation without associated systemic features nor prior non-CNS episodes. This inflammation may respond to complement blockade therapy. METHODS This is a case description of a young girl with severe longitudinal transverse myelitis treated with aggressive immunotherapy that included eculizumab. Published cases of CFI-associated CNS inflammation were reviewed and discussed. RESULTS A primary immunodeficiency panel revealed 2 germline pathogenic variants in the CFI gene. Further complement testing of the index case and her family confirmed complete CFI deficiency. DISCUSSION We describe a unique case of severe spinal inflammation secondary to complete CFI deficiency. Although rare, isolated CNS inflammation may be the primary manifestation of complete CFI deficiency. To halt the uncontrolled complement-mediated inflammation associated with CFI deficiency, prompt targeted blockade of the complement pathway using eculizumab may be life changing in the acute phase. Long-lasting blockade of the complement pathway is also essential to prevent relapse in this subgroup of patients.
Collapse
Affiliation(s)
- Valérie Massey
- From the Immunology and Rheumatology Division (V.M., J.J.D.B., H.D.), Department of Pediatrics, Sainte-Justine University Hospital Center; Allergy and Immunology Division (V.M.), Sacré-Coeur Hospital; Neurology Division (C.-T.E.N.), Department of Pediatrics; Intensive Care Division (T.F., A.B.), Department of Pediatrics; Clinical Department of Laboratory Medicine (A.B.), OPTILAB; and Nephrology Division (A.-L.L.), Department of Pediatrics, Sainte-Justine University Hospital Center, Montreal, Canada
| | - Cam-Tu Emilie Nguyen
- From the Immunology and Rheumatology Division (V.M., J.J.D.B., H.D.), Department of Pediatrics, Sainte-Justine University Hospital Center; Allergy and Immunology Division (V.M.), Sacré-Coeur Hospital; Neurology Division (C.-T.E.N.), Department of Pediatrics; Intensive Care Division (T.F., A.B.), Department of Pediatrics; Clinical Department of Laboratory Medicine (A.B.), OPTILAB; and Nephrology Division (A.-L.L.), Department of Pediatrics, Sainte-Justine University Hospital Center, Montreal, Canada
| | - Tine François
- From the Immunology and Rheumatology Division (V.M., J.J.D.B., H.D.), Department of Pediatrics, Sainte-Justine University Hospital Center; Allergy and Immunology Division (V.M.), Sacré-Coeur Hospital; Neurology Division (C.-T.E.N.), Department of Pediatrics; Intensive Care Division (T.F., A.B.), Department of Pediatrics; Clinical Department of Laboratory Medicine (A.B.), OPTILAB; and Nephrology Division (A.-L.L.), Department of Pediatrics, Sainte-Justine University Hospital Center, Montreal, Canada
| | - Jean Jacques De Bruycker
- From the Immunology and Rheumatology Division (V.M., J.J.D.B., H.D.), Department of Pediatrics, Sainte-Justine University Hospital Center; Allergy and Immunology Division (V.M.), Sacré-Coeur Hospital; Neurology Division (C.-T.E.N.), Department of Pediatrics; Intensive Care Division (T.F., A.B.), Department of Pediatrics; Clinical Department of Laboratory Medicine (A.B.), OPTILAB; and Nephrology Division (A.-L.L.), Department of Pediatrics, Sainte-Justine University Hospital Center, Montreal, Canada
| | - Arnaud Bonnefoy
- From the Immunology and Rheumatology Division (V.M., J.J.D.B., H.D.), Department of Pediatrics, Sainte-Justine University Hospital Center; Allergy and Immunology Division (V.M.), Sacré-Coeur Hospital; Neurology Division (C.-T.E.N.), Department of Pediatrics; Intensive Care Division (T.F., A.B.), Department of Pediatrics; Clinical Department of Laboratory Medicine (A.B.), OPTILAB; and Nephrology Division (A.-L.L.), Department of Pediatrics, Sainte-Justine University Hospital Center, Montreal, Canada
| | - Anne-Laure Lapeyraque
- From the Immunology and Rheumatology Division (V.M., J.J.D.B., H.D.), Department of Pediatrics, Sainte-Justine University Hospital Center; Allergy and Immunology Division (V.M.), Sacré-Coeur Hospital; Neurology Division (C.-T.E.N.), Department of Pediatrics; Intensive Care Division (T.F., A.B.), Department of Pediatrics; Clinical Department of Laboratory Medicine (A.B.), OPTILAB; and Nephrology Division (A.-L.L.), Department of Pediatrics, Sainte-Justine University Hospital Center, Montreal, Canada
| | - Hélène Decaluwe
- From the Immunology and Rheumatology Division (V.M., J.J.D.B., H.D.), Department of Pediatrics, Sainte-Justine University Hospital Center; Allergy and Immunology Division (V.M.), Sacré-Coeur Hospital; Neurology Division (C.-T.E.N.), Department of Pediatrics; Intensive Care Division (T.F., A.B.), Department of Pediatrics; Clinical Department of Laboratory Medicine (A.B.), OPTILAB; and Nephrology Division (A.-L.L.), Department of Pediatrics, Sainte-Justine University Hospital Center, Montreal, Canada
| |
Collapse
|
3
|
Hallam TM, Sharp SJ, Andreadi A, Kavanagh D. Complement factor I: Regulatory nexus, driver of immunopathology, and therapeutic. Immunobiology 2023; 228:152410. [PMID: 37478687 DOI: 10.1016/j.imbio.2023.152410] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 07/23/2023]
Abstract
Complement factor I (FI) is the nexus for classical, lectin and alternative pathway complement regulation. FI is an 88 kDa plasma protein that circulates in an inactive configuration until it forms a trimolecular complex with its cofactor and substrate whereupon a structural reorganization allows the catalytic triad to cleave its substrates, C3b and C4b. In keeping with its role as the master complement regulatory enzyme, deficiency has been linked to immunopathology. In the setting of complete FI deficiency, a consumptive C3 deficiency results in recurrent infections with encapsulated microorganisms. Aseptic cerebral inflammation and vasculitic presentations are also less commonly observed. Heterozygous mutations in the factor I gene (CFI) have been demonstrated to be enriched in atypical haemolytic uraemic syndrome, albeit with a very low penetrance. Haploinsufficiency of CFI has also been associated with decreased retinal thickness and is a strong risk factor for the development of age-related macular degeneration. Supplementation of FI using plasma purified or recombinant protein has long been postulated, however, technical difficulties prevented progression into clinical trials. It is only using gene therapy that CFI supplementation has reached the clinic with GT005 in phase I/II clinical trials for geographic atrophy.
Collapse
Affiliation(s)
- T M Hallam
- Gyroscope Therapeutics Limited, A Novartis Company, Rolling Stock Yard, London N7 9AS, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK; National Renal Complement Therapeutics Centre, Building 26, Royal Victoria Infirmary, UK
| | - S J Sharp
- Gyroscope Therapeutics Limited, A Novartis Company, Rolling Stock Yard, London N7 9AS, UK
| | - A Andreadi
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK; National Renal Complement Therapeutics Centre, Building 26, Royal Victoria Infirmary, UK
| | - D Kavanagh
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK; National Renal Complement Therapeutics Centre, Building 26, Royal Victoria Infirmary, UK; NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK.
| |
Collapse
|
4
|
Connaughton DM, Bhai P, Isenring P, Mahdi M, Sadikovic B, Schenkel LC. Genotypic analysis of a large cohort of patients with suspected atypical hemolytic uremic syndrome. J Mol Med (Berl) 2023; 101:1029-1040. [PMID: 37466676 PMCID: PMC10400659 DOI: 10.1007/s00109-023-02341-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/20/2023]
Abstract
Atypical hemolytic uremic syndrome (aHUS) is characterized by microangiopathic hemolytic anemia, thrombocytopenia, and renal impairment. Complement and coagulation gene variants have been associated with aHUS susceptibility. We assessed the diagnostic yield of a next-generation sequencing (NGS) panel in a large cohort of Canadian patients with suspected aHUS. Molecular testing was performed on peripheral blood DNA samples from 167 patients, collected between May 2019 and December 2021, using a clinically validated NGS pipeline. Coding exons with 20 base pairs of flanking intronic regions for 21 aHUS-associated or candidate genes were enriched using a custom hybridization protocol. All sequence and copy number variants were assessed and classified following American College of Medical Genetics guidelines. Molecular diagnostic results were reported for four variants in three individuals (1.8%). Twenty-seven variants of unknown significance were identified in 25 (15%) patients, and 34 unique variants in candidate genes were identified in 28 individuals. An illustrative patient case describing two genetic alterations in complement genes is presented, highlighting that variable expressivity and incomplete penetrance must be considered when interpreting genetic data in patients with complement-mediated disease, alongside the potential additive effects of genetic variants on aHUS pathophysiology. In this cohort of patients with suspected aHUS, using clinical pipelines for genetic testing and variant classification, pathogenic/likely pathogenic variants occurred in a very small percentage of patients. Our results highlight the ongoing challenges in variant classification following NGS panel testing in patients with suspected aHUS, alongside the need for clear testing guidance in the clinical setting. KEY MESSAGES: • Clinical molecular testing for disease associated genes in aHUS is challenging. • Challenges include patient selection criteria, test validation, and interpretation. • Most variants were of uncertain significance (31.7% of patients; VUS + candidates). • Their clinical significance may be elucidated as more evidence becomes available. • Low molecular diagnostic rate (1.8%), perhaps due to strict classification criteria. • Case study identified two likely pathogenic variants; one each in MCP/CD46 and CFI.
Collapse
Affiliation(s)
- Dervla M Connaughton
- Schulich School of Medicine & Dentistry, University of Western, London, ON, Canada
- Department of Medicine, Division of Nephrology, London Health Sciences Centre, 339 Windermere Road, London, ON, Canada
| | - Pratibha Bhai
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre (LHSC), London, ON, Canada
| | - Paul Isenring
- Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | | | - Bekim Sadikovic
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre (LHSC), London, ON, Canada
- Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Laila C Schenkel
- Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre (LHSC), London, ON, Canada.
- Pathology and Laboratory Medicine, Western University, London, ON, Canada.
| |
Collapse
|
5
|
Shaughnessy J, Chabeda A, Lewis LA, Ram S. Alternative pathway amplification and infections. Immunol Rev 2023; 313:162-180. [PMID: 36336911 DOI: 10.1111/imr.13160] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The alternative pathway (AP) is the phylogenetically oldest arm of the complement system and may have evolved to mark pathogens for elimination by phagocytes. Studies using purified AP proteins or AP-specific serum showed that C3b amplification on bacteria commenced following a lag phase of about 5 min and was highly dependent on the concentration of complement. Most pathogens have evolved several elegant mechanisms to evade complement, including expressing proteases that degrade AP proteins and secreting proteins that block function of C3 convertases. In an example of convergent evolution, many microbes recruit the AP inhibitor factor H (FH) using molecular mechanisms that mimic FH interactions with host cells. In most instances, the AP serves to amplify C3b deposited on microbes by the classical pathway (CP). The role of properdin on microbes appears to be restricted to stabilization of C3 convertases; scant evidence exists for its role as an initiator of the AP on pathogens in the context of serum. Therapeutic complement inhibition carries with it an increased risk of infection. Antibody (Ab)-dependent AP activation may be critical for complement activation by vaccine-elicited Ab when the CP is blocked, and its molecular mechanism is discussed.
Collapse
Affiliation(s)
- Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Aleyo Chabeda
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
6
|
Hallam TM, Cox TE, Smith-Jackson K, Brocklebank V, Baral AJ, Tzoumas N, Steel DH, Wong EKS, Shuttleworth VG, Lotery AJ, Harris CL, Marchbank KJ, Kavanagh D. A novel method for real-time analysis of the complement C3b:FH:FI complex reveals dominant negative CFI variants in age-related macular degeneration. Front Immunol 2022; 13:1028760. [PMID: 36643920 PMCID: PMC9832388 DOI: 10.3389/fimmu.2022.1028760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/14/2022] [Indexed: 12/29/2022] Open
Abstract
Age-related macular degeneration (AMD) is linked to 2 main disparate genetic pathways: a chromosome 10 risk locus and the alternative pathway (AP) of complement. Rare genetic variants in complement factor H (CFH; FH) and factor I (CFI; FI) are associated with AMD. FH acts as a soluble cofactor to facilitate FI's cleavage and inactivation of the central molecule of the AP, C3b. For personalised treatment, sensitive assays are required to define the functional significance of individual AP genetic variants. Generation of recombinant FI for functional analysis has thus far been constrained by incomplete processing resulting in a preparation of active and inactive protein. Using an internal ribosomal entry site (IRES)-Furin-CFI expression vector, fully processed FI was generated with activity equivalent to serum purified FI. By generating FI with an inactivated serine protease domain (S525A FI), a real-time surface plasmon resonance assay of C3b:FH:FI complex formation for characterising variants in CFH and CFI was developed and correlated well with standard assays. Using these methods, we further demonstrate that patient-associated rare genetic variants lacking enzymatic activity (e.g. CFI I340T) may competitively inhibit the wild-type FI protein. The dominant negative effect identified in inactive factor I variants could impact on the pharmacological replacement of FI currently being investigated for the treatment of dry AMD.
Collapse
Affiliation(s)
- Thomas M. Hallam
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom,National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Thomas E. Cox
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom,National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Kate Smith-Jackson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom,National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Vicky Brocklebank
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom,National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - April J. Baral
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom,National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Nikolaos Tzoumas
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom,National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - David H. Steel
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom,Sunderland Eye Infirmary, Sunderland, United Kingdom,Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Edwin K. S. Wong
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom,National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Victoria G. Shuttleworth
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom,National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Andrew J. Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Claire L. Harris
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom,National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Kevin J. Marchbank
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom,National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - David Kavanagh
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom,National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom,National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre, Biomedical Research Building, Newcastle upon Tyne, United Kingdom,*Correspondence: David Kavanagh,
| |
Collapse
|
7
|
Moon J. Rare genetic causes of meningitis and encephalitis. ENCEPHALITIS 2022; 2:29-35. [PMID: 37469651 PMCID: PMC10295911 DOI: 10.47936/encephalitis.2021.00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 07/21/2023] Open
Abstract
Differential diagnosis of meningitis and encephalitis is often very challenging because it cannot be determined based on symptoms, and the diseases have various causes. This article explains rare genetic causes of meningitis and encephalitis. Autoinflammatory disorders include cryopyrin-associated periodic syndromes, familial Mediterranean fever, and tumor necrosis factor receptor-associated periodic syndrome. Furthermore, other genetic disorders, such as complement factor I deficiency, phosphatidylinositol glycan anchor biosynthesis class T mutation, and neuronal intranuclear inclusion disease, can present as meningitis and encephalitis.
Collapse
Affiliation(s)
- Jangsup Moon
- Rare Disease Center, Departments of Genomic Medicine and Neurology, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
8
|
A novel missense mutation in complement factor I predisposes patients to atypical hemolytic uremic syndrome: a case report. J Med Case Rep 2022; 16:101. [PMID: 35241161 PMCID: PMC8895779 DOI: 10.1186/s13256-022-03312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/03/2022] [Indexed: 12/04/2022] Open
Abstract
Background Atypical hemolytic uremic syndrome, also called the nondiarrheal form of hemolytic uremic syndrome, is a rare disease characterized by the triad of thrombocytopenia, Coomb’s test-negative microangiopathic hemolytic anemia, and acute renal failure. Approximately 60% of cases of atypical hemolytic uremic syndrome are associated with deficiencies of the complement regulatory protein, including mutations in complement factor H, complement factor I, or the membrane co-factor protein. Case presentation We report the case of a 26-year-old Asian man who presented with pulmonary infection, elevated blood pressure, microangiopathic hemolytic anemia, thrombocytopenia, and acute renal failure. Renal biopsy revealed diffuse capillary fibrin deposition, endothelial swelling, and arteriole narrowing like “onion skinning” consistent with thrombotic microangiopathy. Bidirectional sequencing of CFH, CFHR5, CFHR1, CFI, DGKE, CFB, and MCP confirmed that the patient was heterozygous for a novel missense mutation, p.Cys67Phe, in CFI. This patient had rapid evolution to end-stage renal disease and needed renal replacement therapy. Plasma exchange seemed inefficacious in this patient. Conclusions This report confirms the importance of screening patients with atypical hemolytic uremic syndrome for mutations in genes involved in complement system to clarify the diagnosis and demonstrates the challenges in the management of these patients.
Collapse
|
9
|
Franco-Jarava C, Dieli-Crimi R, Vila-Pijoan G, Colobran R, Pujol-Borrell R, Hernández-González M. Serum protein electrophoresis and complement deficiencies: a veteran but very versatile test in clinical laboratories. Clin Chem Lab Med 2019; 57:e179-e182. [PMID: 30721140 DOI: 10.1515/cclm-2018-1121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/16/2018] [Indexed: 11/15/2022]
Affiliation(s)
- Clara Franco-Jarava
- Immunology Department, Hospital Universitari Vall d'Hebron (HUVH), Diagnostic Immunology, Vall d'Hebron Research Institute (VHIR), Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain.,Jeffrey Model Foundation Excellence Center, Barcelona, Spain
| | - Romina Dieli-Crimi
- Immunology Department, Hospital Universitari Vall d'Hebron (HUVH), Diagnostic Immunology, Vall d'Hebron Research Institute (VHIR), Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain.,Jeffrey Model Foundation Excellence Center, Barcelona, Spain
| | - Gemma Vila-Pijoan
- Immunology Department, Hospital Universitari Vall d'Hebron (HUVH), Diagnostic Immunology, Vall d'Hebron Research Institute (VHIR), Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain.,Jeffrey Model Foundation Excellence Center, Barcelona, Spain
| | - Roger Colobran
- Immunology Department, Hospital Universitari Vall d'Hebron (HUVH), Diagnostic Immunology, Vall d'Hebron Research Institute (VHIR), Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain.,Jeffrey Model Foundation Excellence Center, Barcelona, Spain
| | - Ricardo Pujol-Borrell
- Immunology Department, Hospital Universitari Vall d'Hebron (HUVH), Diagnostic Immunology, Vall d'Hebron Research Institute (VHIR), Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain.,Jeffrey Model Foundation Excellence Center, Barcelona, Spain
| | - Manuel Hernández-González
- Immunology Department, Hospital Universitari Vall d'Hebron (HUVH), Diagnostic Immunology, Vall d'Hebron Research Institute (VHIR), Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain.,Jeffrey Model Foundation Excellence Center, Barcelona, Spain
| |
Collapse
|
10
|
Shields AM, Pagnamenta AT, Pollard AJ, Taylor JC, Allroggen H, Patel SY. Classical and Non-classical Presentations of Complement Factor I Deficiency: Two Contrasting Cases Diagnosed via Genetic and Genomic Methods. Front Immunol 2019; 10:1150. [PMID: 31231365 PMCID: PMC6568211 DOI: 10.3389/fimmu.2019.01150] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/07/2019] [Indexed: 11/13/2022] Open
Abstract
Deficiency of complement factor I is a rare immunodeficiency that typically presents with increased susceptibility to encapsulated bacterial infections. However, non-infectious presentations including rheumatological, dermatological and neurological disease are increasingly recognized and require a high-index of suspicion to reach a timely diagnosis. Herein, we present two contrasting cases of complement factor I deficiency: one presenting in childhood with invasive pneumococcal disease, diagnosed using conventional immunoassays and genetics and the second presenting in adolescence with recurrent sterile neuroinflammation, diagnosed via a genomic approach. Our report and review of the literature highlight the wide spectrum of clinical presentations associated with CFI deficiency and the power of genomic medicine to inform rare disease diagnoses.
Collapse
Affiliation(s)
- Adrian M Shields
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Department of Clinical Immunology, John Radcliffe Hospital, Oxford, United Kingdom
| | - Alistair T Pagnamenta
- NIHR Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | | | - Jenny C Taylor
- NIHR Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Holger Allroggen
- Department of Neurology, University Hospital Coventry, Coventry, United Kingdom
| | - Smita Y Patel
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
11
|
Nanthapisal S, Eleftheriou D, Gilmour K, Leone V, Ramnath R, Omoyinmi E, Hong Y, Klein N, Brogan PA. Cutaneous Vasculitis and Recurrent Infection Caused by Deficiency in Complement Factor I. Front Immunol 2018; 9:735. [PMID: 29696024 PMCID: PMC5904195 DOI: 10.3389/fimmu.2018.00735] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/26/2018] [Indexed: 11/23/2022] Open
Abstract
Cutaneous leukocytoclastic vasculitis arises from immune complex deposition and dysregulated complement activation in small blood vessels. There are many causes, including dysregulated host response to infection, drug reactions, and various autoimmune conditions. It is increasingly recognised that some monogenic autoinflammatory diseases cause vasculitis, although genetic causes of vasculitis are extremely rare. We describe a child of consanguineous parents who presented with chronic cutaneous leukocytoclastic vasculitis, recurrent upper respiratory tract infection, and hypocomplementaemia. A homozygous p.His380Arg mutation in the complement factor I (CFI) gene CFI was identified as the cause, resulting in complete absence of alternative complement pathway activity, decreased classical complement activity, and low levels of serum factor I, C3, and factor H. C4 and C2 levels were normal. The same homozygous mutation and immunological defects were also identified in an asymptomatic sibling. CFI deficiency is thus now added to the growing list of monogenic causes of vasculitis and should always be considered in vasculitis patients found to have persistently low levels of C3 with normal C4.
Collapse
Affiliation(s)
- Sira Nanthapisal
- Infection Inflammation and Rheumatology Section, Great Ormond Street Institute of Child Health, University College London, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom.,Department of Pediatrics, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - Despina Eleftheriou
- Infection Inflammation and Rheumatology Section, Great Ormond Street Institute of Child Health, University College London, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Kimberly Gilmour
- Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Valentina Leone
- Department of Paediatric Rheumatology, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Radhika Ramnath
- Department of Histopathology, St. James University Hospital, Leeds, United Kingdom
| | - Ebun Omoyinmi
- Infection Inflammation and Rheumatology Section, Great Ormond Street Institute of Child Health, University College London, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Ying Hong
- Infection Inflammation and Rheumatology Section, Great Ormond Street Institute of Child Health, University College London, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Nigel Klein
- Infection Inflammation and Rheumatology Section, Great Ormond Street Institute of Child Health, University College London, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Paul A Brogan
- Infection Inflammation and Rheumatology Section, Great Ormond Street Institute of Child Health, University College London, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|