1
|
Madamsetty VS, Mohammadinejad R, Uzieliene I, Nabavi N, Dehshahri A, García-Couce J, Tavakol S, Moghassemi S, Dadashzadeh A, Makvandi P, Pardakhty A, Aghaei Afshar A, Seyfoddin A. Dexamethasone: Insights into Pharmacological Aspects, Therapeutic Mechanisms, and Delivery Systems. ACS Biomater Sci Eng 2022; 8:1763-1790. [PMID: 35439408 PMCID: PMC9045676 DOI: 10.1021/acsbiomaterials.2c00026] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dexamethasone (DEX) has been widely used to treat a variety of diseases, including autoimmune diseases, allergies, ocular disorders, cancer, and, more recently, COVID-19. However, DEX usage is often restricted in the clinic due to its poor water solubility. When administered through a systemic route, it can elicit severe side effects, such as hypertension, peptic ulcers, hyperglycemia, and hydro-electrolytic disorders. There is currently much interest in developing efficient DEX-loaded nanoformulations that ameliorate adverse disease effects inhibiting advancements in scientific research. Various nanoparticles have been developed to selectively deliver drugs without destroying healthy cells or organs in recent years. In the present review, we have summarized some of the most attractive applications of DEX-loaded delivery systems, including liposomes, polymers, hydrogels, nanofibers, silica, calcium phosphate, and hydroxyapatite. This review provides our readers with a broad spectrum of nanomedicine approaches to deliver DEX safely.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, Florida 32224, United States
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7618866749, Iran
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
| | - Noushin Nabavi
- Department of Urologic Sciences, Vancouver Prostate Centre, Vancouver, British Columbia, Canada V6H 3Z6
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Jomarien García-Couce
- Department of Radiology, Division of Translational Nanobiomaterials and Imaging, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
- Department of Polymeric Biomaterials, Biomaterials Center (BIOMAT), University of Havana, Havana 10600, Cuba
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1417755469, Iran
| | - Saeid Moghassemi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7618866748, Iran
| | - Abbas Aghaei Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7618866749, Iran
| | - Ali Seyfoddin
- Drug Delivery Research Group, Auckland University of Technology (AUT), School of Science, Auckland 1010, New Zealand
| |
Collapse
|
2
|
|
3
|
Targhi AA, Moammeri A, Jamshidifar E, Abbaspour K, Sadeghi S, Lamakani L, Akbarzadeh I. Synergistic effect of curcumin-Cu and curcumin-Ag nanoparticle loaded niosome: Enhanced antibacterial and anti-biofilm activities. Bioorg Chem 2021; 115:105116. [PMID: 34333420 DOI: 10.1016/j.bioorg.2021.105116] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 12/11/2022]
Abstract
In the current study, for the first time, the synergistic activity of curcumin and silver/copper nanoparticles (NPs) was studied against Staphylococcus aureus and Pseudomonas aeruginosa. Moreover, a unique combination of curcumin and silver/copper NPs in free and encapsulated forms was prepared and delivered through a niosomal system. For this purpose, different niosomal formulations of curcumin and metal NPs were prepared by thin film hydration method. Then, the dual drug-loaded niosomes were dispersed in chitosan hydrogel in order to widen its applications. The effect of the molar ratios of lipid to drug and surfactant to cholesterol was investigated to find the optimized noisomal nanoparticles in terms of size, polydispersity index (PDI), and entrapment efficiency (EE). The size and PDI values were measured by dynamic light scattering (DLS). Morphology and in vitro drug release kinetics of niosomes were examined by scanning and transmission electron microscopy (SEM, TEM) and dialysis method, respectively. The drug-loaded niosomes and their hydrogel counterpart were screened for investigating their antibacterial activity against S. aureus and P. aeruginosa by disk diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. Furthermore, anti-biofilm assay and expression of biofilm-associated genes by Real-time PCR were performed to evaluate the anti-biofilm effect of NPs. In this study, the drug-loaded niosomal formulations showed good entrapment efficiencies (EE) with a sustained release profile over 72 h. Moreover, compared to free drugs, the optimized niosomal formulations increased antibacterial activity against the bacteria via promotion in the inhibition zone and reduction in MIC and MBC values. Interestingly, gel-based niosomal formulations increased the inhibition zone by about 6 mm and significantly decreased MIC and MBC values compared to niosomal formulations. Also, biofilm eradication of curcumin-metal NPs encapsulated into niosomal hydrogel was highest compared to free and niosomal drugs. Overall, curcumin-Cu or curcumin-Ag nanoparticle loaded niosomes incorporated in hydrogel hold great promise for biomedical applications.
Collapse
Affiliation(s)
| | - Ali Moammeri
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Elham Jamshidifar
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Koorosh Abbaspour
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Somayeh Sadeghi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.
| | - Lida Lamakani
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
4
|
Dehshahri A, Kumar A, Madamsetty VS, Uzieliene I, Tavakol S, Azedi F, Fekri HS, Zarrabi A, Mohammadinejad R, Thakur VK. New Horizons in Hydrogels for Methotrexate Delivery. Gels 2020; 7:2. [PMID: 33396629 PMCID: PMC7839000 DOI: 10.3390/gels7010002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022] Open
Abstract
Since its first clinical application, methotrexate (MTX) has been widely used for the treatment of human diseases. Despite great advantages, some properties such as poor absorption, short plasma half-life and unpredictable bioavailability have led researchers to seek novel delivery systems to improve its characteristics for parenteral and oral administration. Recently, great attention has been directed to hydrogels for the preparation of MTX formulations. This review describes the potential of hydrogels for the formulation of MTX to treat cancer, rheumatoid arthritis, psoriasis and central nervous system diseases. We will delineate the state-of-the-art and promising potential of hydrogels for systemic MTX delivery as well as transdermal delivery of the drug-using hydrogel-based formulations.
Collapse
Affiliation(s)
- Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran;
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
| | - Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA;
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania;
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran; (S.T.); (F.A.)
| | - Fereshteh Azedi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran; (S.T.); (F.A.)
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Hojjat Samareh Fekri
- Student Research Committee, Kerman University of Medical Sciences, Kerman 7619813159, Iran;
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey;
| | - Reza Mohammadinejad
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7618866749, Iran
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| |
Collapse
|
5
|
Mohammadinejad R, Dehshahri A, Sagar Madamsetty V, Zahmatkeshan M, Tavakol S, Makvandi P, Khorsandi D, Pardakhty A, Ashrafizadeh M, Ghasemipour Afshar E, Zarrabi A. In vivo gene delivery mediated by non-viral vectors for cancer therapy. J Control Release 2020; 325:249-275. [PMID: 32634464 PMCID: PMC7334939 DOI: 10.1016/j.jconrel.2020.06.038] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022]
Abstract
Gene therapy by expression constructs or down-regulation of certain genes has shown great potential for the treatment of various diseases. The wide clinical application of nucleic acid materials dependents on the development of biocompatible gene carriers. There are enormous various compounds widely investigated to be used as non-viral gene carriers including lipids, polymers, carbon materials, and inorganic structures. In this review, we will discuss the recent discoveries on non-viral gene delivery systems. We will also highlight the in vivo gene delivery mediated by non-viral vectors to treat cancer in different tissue and organs including brain, breast, lung, liver, stomach, and prostate. Finally, we will delineate the state-of-the-art and promising perspective of in vivo gene editing using non-viral nano-vectors.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA
| | - Masoumeh Zahmatkeshan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy; Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6153753843, Iran
| | - Danial Khorsandi
- Department of Medical Nanotechnology, Faculty of Advanced, Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran; Department of Biotechnology-Biomedicine, University of Barcelona, Barcelona 08028, Spain
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey.
| |
Collapse
|
6
|
Functionalization of Polymers and Nanomaterials for Biomedical Applications: Antimicrobial Platforms and Drug Carriers. PROSTHESIS 2020. [DOI: 10.3390/prosthesis2020012] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of polymers and nanomaterials has vastly grown for industrial and biomedical sectors during last years. Before any designation or selection of polymers and their nanocomposites, it is vital to recognize the targeted applications which require these platforms to be modified. Surface functionalization to introduce the desired type and quantity of reactive functional groups to target a cell or tissue in human body is a pivotal approach to improve the physicochemical and biological properties of these materials. Herein, advances in the functionalized polymer and nanomaterials surfaces are highlighted along with their applications in biomedical fields, e.g., antimicrobial therapy and drug delivery.
Collapse
|