1
|
Enhanced electrocatalytic performance of 2D Ni-MOF for ethanol oxidation reaction by loading carbon dots. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
2
|
Acetonitrile’s Effect on the Efficiency of Ethanol Electrooxidation at a Polycrystalline Pt Electrode in Relation to pH-Dependent Fuel Cell Applications. Catalysts 2020. [DOI: 10.3390/catal10111286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The present paper reports cyclic voltammetric and a.c. impedance spectroscopy investigations on the influence of the acetonitrile concentration on the kinetics (and individual product’s efficiency) of the ethanol oxidation reaction (EOR), performed on a polycrystalline Pt electrode surface in 0.5 M H2SO4 and 0.1 M NaOH supporting solutions. The kinetics of the EOR were examined at room temperature over the voltammetric potential range, which covers the electrooxidation of surface-adsorbed COAds species, as well as the formation of acetaldehyde molecules. In addition, the time-dependent efficiency of acetate and acetaldehyde formation in relation to the initial acetonitrile content for both acidic and alkaline electrolytes was evaluated by means of spectrophotometric Ultraviolet/ Visible Spectroscopy (UV-VIS) instrumental analysis.
Collapse
|