1
|
Wu X, Mao Q, Hao Y, Yang J, Zhang X, Chi Z, Liu G, Wang M, Chen Q, Chen X. Isolation of Cytochrome C for Proteomics with Lindqvist-type Polyiodate Modified Metal Organic Framework. J Chromatogr A 2023; 1693:463869. [PMID: 36822038 DOI: 10.1016/j.chroma.2023.463869] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 02/10/2023] [Indexed: 02/21/2023]
Abstract
Separation and purification of Cytochrome C (Cyt-C) is important for proteomic. High efficient and selective pretreatment method for Cyt-C in real samples are always needed. Herein, polyniobate (K7H[Nb6O19]·13H2O, Nb6O19) is modified on a metal-organic framework MIL-125(Ti) through intermolecular hydrogen bonds and an aqueous-stable composite Nb6O19/MIL-125(Ti) is successfully prepared to pretreat complex protein sample. Protein adsorption studies have shown that Nb6O19/MIL-125(Ti) can promote the selective adsorption of Cyt-C due to the synergistic effect of electrostatic and hydrogen-bond interactions. At pH=10.0 (Britton-Robinson buffer), the adsorption efficiency of 300 μL 100 μg·mL-1 Cyt-C onto 1.0 mg Nb6O19/MIL-125(Ti) can reach 99.5%. The adsorption behavior of Cyt-C fits well with the Langmuir adsorption model, corresponding to a maximum theoretical adsorption capacity of 168.35 mg·g-1. Using 3 mol·L-1 NaCl as the eluent, a high elution efficiency of 92.19% is obtained. In addition, the results of the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis confirm that Nb6O19/MIL-125(Ti) efficiently adsorbed Cyt-C from scrofa heart extraction. LC-MS/MS spectrometry results show that the purification of Cyt-C reduces the abundance from the 12th to the 154th place after Nb6O19/MIL-125(Ti) treatment. Moreover, low abundant proteins, e.g., Superoxide dismutase 1, IF rod domain-containing protein and Ubiquitin-60S ribosomal protein L40 were considerably enriched. These outcomes confirm the practicability of Nb6O19/MIL-125 (Ti) as a Cyt-C extractant has potential application value in scrofa heart proteomics.
Collapse
Affiliation(s)
- Xi Wu
- College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Quanxing Mao
- College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Yangguang Hao
- Institute of Translational Medicine, Department of Pharmacy, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Junna Yang
- College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Xiaonan Zhang
- Institute of Translational Medicine, Department of Pharmacy, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Zixin Chi
- Institute of Translational Medicine, Department of Pharmacy, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Guangyan Liu
- Institute of Translational Medicine, Department of Pharmacy, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Mengmeng Wang
- Institute of Translational Medicine, Department of Pharmacy, Shenyang Medical College, Shenyang, 110034, People's Republic of China;.
| | - Qing Chen
- Institute of Translational Medicine, Department of Pharmacy, Shenyang Medical College, Shenyang, 110034, People's Republic of China;.
| | - Xuwei Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| |
Collapse
|
2
|
Ma X, Wei X, Wang M, Zhang N, Chen P, Hua J. A hexa-Cu cluster sandwiched silicotungstate with reactive oxygen species catalytic ability and anti-tumor activity in PC12 cells. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Hua J, Wei X, Li Y, Li L, Zhang H, Wang F, Zhang C, Ma X. A Cyclen-Functionalized Cobalt-Substituted Sandwich-Type Tungstoarsenate with Versatility in Removal of Methylene Blue and Anti-ROS-Sensitive Tumor Cells. Molecules 2022; 27:molecules27196451. [PMID: 36234988 PMCID: PMC9573041 DOI: 10.3390/molecules27196451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Oxidative degradation by using reactive oxygen species (ROS) is an effective method to treat pollutants. The synthesis of artificial oxidase for the degradation of dyes is a hot spot in molecular science. In this study, a nanoscale sandwich-type polyoxometalate (POM) on the basis of a tetra-nuclear cobalt cluster and trivacant B-α-Keggin-type tungstoarsenate {[Co(C8H20N4)]4}{Co4(H2O)2[HAsW9O34]2}∙4H2O (abbreviated as CAW, C8H20N4 = cyclen) has been synthesized and structurally examined by infrared (IR) spectrum, ultraviolet–visible (UV–Vis) spectrum, X-ray photoelectron spectrum (XPS), single-crystal X-ray diffraction (SXRD), and bond valence sum (Σs) calculation. According to the structural analysis, the principal element of the CAW is derived from modifying sandwich-type polyanion {Co4(H2O)2 [HAsW9O34]2}8– with four [Co(Cyclen)]2+, in which 1,4,7,10-tetraazacyclododecane (cyclen) is firstly applied to modify POM. It is also demonstrated that CAW is capable of efficiently catalyzing the production of ROS by the synergistic effects of POM fragments and Co–cyclen complexes. Moreover, CAW can interfere with the morphology and proliferation of sensitive cells by producing ROS and exhibits ability in specifically eliminating methylene blue (MB) dyes from the solution system by both adsorption and catalytic oxidation.
Collapse
Affiliation(s)
- Jiai Hua
- Chemistry and Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan 030008, China
- Laboratory of Biochemistry and Pharmacy, Taiyuan Institute of Technology, Taiyuan 030008, China
| | - Xueman Wei
- Department of Geriatrics, First Affiliated Hospital of Naval Medical University, Shanghai 200081, China
| | - Yifeng Li
- Chemistry and Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan 030008, China
| | - Lingzhi Li
- Laboratory of Biochemistry and Pharmacy, Taiyuan Institute of Technology, Taiyuan 030008, China
| | - Hui Zhang
- Chemistry and Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan 030008, China
| | - Feng Wang
- Laboratory of Biochemistry and Pharmacy, Taiyuan Institute of Technology, Taiyuan 030008, China
- Correspondence: (F.W.); (C.Z.); (X.M.); Tel.: +86-351-356-9476 (X.M.)
| | - Changli Zhang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
- Correspondence: (F.W.); (C.Z.); (X.M.); Tel.: +86-351-356-9476 (X.M.)
| | - Xiang Ma
- Chemistry and Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan 030008, China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Correspondence: (F.W.); (C.Z.); (X.M.); Tel.: +86-351-356-9476 (X.M.)
| |
Collapse
|
4
|
A Novel Tri-Coordination Zinc Complex Functionalized Silicotungstate with ROS Catalytic Ability and Anti-Tumor Cells Activity. Catalysts 2022. [DOI: 10.3390/catal12070695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Reactive oxygen species (ROS) can be used as an effective method to treat tumors. Artificial oxidase has received increasing attention as a catalyst for ROS generation in fields ranging from bioinorganic chemistry to pharmaceutical chemistry. In this study, an artificial oxidase based on a binuclear zinc complex and Keggin-type silicotungstate [Zn2(4,4′-bpy)(Phen)2][SiW12O40] (ZSW) (4,4′-bpy = 4,4′-bipyridine; Phen = 1,10-phenanthroline) was synthesized and structurally featured in terms of its X-ray photoelectron spectrum (XPS), bond valence sum (Σs) calculation, IR spectra, and single-crystal X-ray diffraction (SXRD). ZSW is an ionic compound in which the cation is a binuclear zinc complex [Zn2(4,4′-bpy)(Phen)2]4+ and the anion is a α-Keggin-type silicotungstate [SiW12O40]4– cluster. Notably, the Zn ions in the [Zn2(4,4′-bpy)(Phen)2] exist in tri-coordination, which was first obtained in polyoxometalate (POM) chemistry. It was also demonstrated that ZSW is capable of efficiently catalyzing the production of ROS, which, according to the computational calculations, may be due to the synergistic action of zinc complexes and POM building blocks. Furthermore, ZSW exhibited inhibition ability toward ROS-sensitive tumor cells, such as PC12 cells.
Collapse
|
5
|
Hua JA, Ma X, Niu J, Xia BX, Gao XY, Niu YL, Ma PT. A Novel Tetrameric Heptomolybdate with Reactive Oxygen Species Catalytic Ability. RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s1070328422050050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Ma X, Hua J, Xu C, Zhang L, Wang Y, Zhang J, Cao L, Niu Y, Ma P. A Heterogeneous Catalyzed Oxidase Consists of Zinc-Substituted Arsenomolybdate with Reactive Oxygen Species Catalytic Ability. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02185-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
7
|
Li B, Chang H, Wang C, Wang S. Study on Polyoxomolybdate [Mo8O26]4− Based Crystalline Compound and Its Polypyrrole Nanocomposite as l-Cysteine Colorimetric Biosensor. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02162-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Ma X, Zhou Y, Yuan X, Miao Y, Zhao Q, Hua J, Ma P. An organic–inorganic hybrid nanoscale phosphotungstate with reactive oxygen species catalytic ability. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2020.1789997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Xiang Ma
- Chemistry and Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, P. R. China
| | - Yingjie Zhou
- Chemistry and Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, P. R. China
| | - Xinru Yuan
- Chemistry and Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, P. R. China
| | - Yujie Miao
- Chemistry and Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, P. R. China
| | - Qiang Zhao
- Chemistry and Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, P. R. China
| | - Jiai Hua
- Chemistry and Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, P. R. China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, P. R. China
| |
Collapse
|