1
|
Zalke JB, Narkhede NP, Pandhurnekar CP, Rotake DR, Singh SG. Non-enzymatic glucose detection with screen-printed chemiresistive sensor using green synthesised silver nanoparticle and multi-walled carbon nanotubes-zinc oxide nanofibers. NANOTECHNOLOGY 2023; 35:065502. [PMID: 37918017 DOI: 10.1088/1361-6528/ad090c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/01/2023] [Indexed: 11/04/2023]
Abstract
Non-enzymatic screen-printed chemiresistive interdigitated electrodes (SPCIE) were designed and fabricated using a low-cost screen-printing method for detection of the glucose. The interdigitated electrodes (IDE) pattern was printed using conductive graphene ink on the glossy surface of the photo paper. The proposed glossy photo paper-based SPCIE are functionalized with multi-walled carbon nanotubes-zinc oxide (MWCNTs-ZnO) nanofibers to create the chemiresistive matrix. Further, to bind these nanofibers with the graphene electrode surface, we have used the green synthesized silver nanoparticles (AgNPs) with banana flower stem fluid (BFSF) as a binder solution. AgNPs with BFSF form the conductive porous natural binder layer (CPNBL). It does not allow to increase the resistivity of the deposited material on graphene electrodes and also keeps the nanofibers intact with paper-based SPCIE. The synthesized material of MWCNT-ZnO nanofibers and green synthesized AgNPs with BFSF as a binder were characterized by Ultraviolet-visible spectroscopy (UV-vis), scanning electron microscope (SEM), x-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). The amperometric measurements were performed on the proposed SPCIE sensor to detect the glucose sample directly. The innovative paper-based SPCIE glucose sensor exhibits a linear corelation between current measurements and glucose concentration in the range between 45.22μm and 20 mm, with a regression coefficient (R2) of 0.9902 and a lower limit of detection (LoD) of 45.22μm (n= 5). The sensitivity of the developed SPCIE sensor was 2178.57μAmM-1cm-2, and the sensor's response time determined was approximately equal to 18 s. The proposed sensor was also tested for real blood serum sample, and relative standard deviation (RSD) was found equal to 2.95%.
Collapse
Affiliation(s)
- Jitendra B Zalke
- Department of Electronics Design Technology, Shri Ramdeobaba College of Engineering and Management, Nagpur, India
| | - N P Narkhede
- Department of Electronics Engineering, Shri Ramdeobaba College of Engineering and Management, Nagpur, India
| | - C P Pandhurnekar
- Department of Chemistry, Shri Ramdeobaba College of Engineering and Management, Nagpur, India
| | - Dinesh R Rotake
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Shiv Govind Singh
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, India
| |
Collapse
|
2
|
Barabadi H, Mobaraki K, Ashouri F, Noqani H, Jounaki K, Mostafavi E. Nanobiotechnological approaches in antinociceptive therapy: Animal-based evidence for analgesic nanotherapeutics of bioengineered silver and gold nanomaterials. Adv Colloid Interface Sci 2023; 316:102917. [PMID: 37150042 DOI: 10.1016/j.cis.2023.102917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023]
Abstract
Pain management is a major challenge in healthcare systems worldwide. Owing to undesirable side effects of current analgesic medications, there is an exceeding need to develop the effective alternative therapeutics. Nowadays, the application of nanomaterials is being highly considered, as their exceptional properties arising from the nanoscale dimensions are undeniable. With the increasing use of metal NPs, more biocompatible and costly methods of synthesis have been developed in which different biological rescores including microorganisms, plants and algae are employed. Nanobiotechnology-based synthesis of nanosized particles is an ecological approach offering safe production of nanoparticles (NPs) by biological resources eliminating the toxicity attributed to the conventional routes. This review provides an assessment of biosynthesized silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) as antinociceptive agents in recent studies. Living animal models (mice and rats) have been used for analyzing the effect of biogenic NPs on decreasing the nociceptive pain utilizing different methods such as acetic acid-induced writhing test, hot plate test, and formalin test. Potent analgesic activity exhibited by green fabricated AgNPs and AuNPs represents the bright future of nanotechnology in the management of pain and other social and medicinal issues followed by this unpleasant sensation. Moreover, there NPs showed a protective effects on liver, kidney, and body weight in animal models that make them attractive for clinical studies. However, further research is required to fully address the harmless antinociceptive effect of NPs for clinical usage.
Collapse
Affiliation(s)
- Hamed Barabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Kiana Mobaraki
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ashouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hesam Noqani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Jounaki
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
3
|
Ajose DJ, Abolarinwa TO, Oluwarinde BO, Montso PK, Fayemi OE, Aremu AO, Ateba CN. Application of Plant-Derived Nanoparticles (PDNP) in Food-Producing Animals as a Bio-Control Agent against Antimicrobial-Resistant Pathogens. Biomedicines 2022; 10:2426. [PMID: 36289688 PMCID: PMC9599314 DOI: 10.3390/biomedicines10102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Antibiotics are regularly used in animal husbandry to treat diseases. This practice is beneficial to animals' health and helps ensure food security. However, the misuse of antibiotics, especially in food-producing animals, has resulted in the advent of antimicrobial resistance (AMR) and its dissemination among foodborne pathogens. The occurrence of AMR in bacteria pathogens that cause infections in animals and those associated with food spoilage is now considered a global health concern affecting humans, animals and the environment. The search for alternative antimicrobial agents has kindled the interest of many researchers. Among the alternatives, using plant-derived nanoparticles (PDNPs) for treating microbial dysfunctions in food-producing animals has gained significant attention. In traditional medicine, plant extracts are considered as safe, efficient and natural antibacterial agents for various animal diseases. Given the complexity of the AMR and concerns about issues at the interface of human health, animal health and the environment, it is important to emphasize the role of a One Health approach in addressing this problem. This review examines the potential of PDNPs as bio-control agents in food-producing animals, intending to provide consumers with microbiologically safe food while ensuring food safety and security, better health for animals and humans and a safe environment.
Collapse
Affiliation(s)
- Daniel Jesuwenu Ajose
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Tesleem Olatunde Abolarinwa
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Bukola Opeyemi Oluwarinde
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Peter Kotsoana Montso
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Omolola Esther Fayemi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Adeyemi Oladapo Aremu
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Indigenous Knowledge Systems (IKS) Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Collins Njie Ateba
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
4
|
Mai TC, Tran NT, Mai DT, Ngoc Mai TT, Thuc Duyen NH, Minh An TN, Alam M, Dang CH, Nguyen TD. Supercritical CO 2 assisted extraction of essential oil and naringin from Citrus grandis peel: in vitro antimicrobial activity and docking study. RSC Adv 2022; 12:25962-25976. [PMID: 36199614 PMCID: PMC9468803 DOI: 10.1039/d2ra04068a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
The extraction of bioactive compounds, including essential oils and flavonoids, using organic solvents is a significant environmental concern. In this work, waste C. grandis peel was the ingredient used to extract essential oil and naringin by conducting a supercritical CO2 technique with a two stage process. In the first stage, the extraction with only supercritical CO2 solvent showed a significant enhancement of the d-limonene component, up to 95.66% compared with the hydro-distillation extraction (87.60%). The extraction of naringin using supercritical CO2 and ethanol as a co-solvent was done in the second stage of the process, followed by evaluating in vitro antimicrobial activity of both the essential oil and naringin. The essential oil indicated significant activity against M. catarrhalis (0.25 mg ml-1), S. pyogenes (1.0 mg ml-1), S. pneumoniae (1.0 mg ml-1). Whilst naringin gave good inhibition towards all tested microbial strains with MIC values in the range of 6.25-25.0 μM. In particular, naringin exhibited high antifungal activity against T. rubrum, T. mentagrophytes, and M. gypseum. The molecular docking study also confirmed that d-limonene inhibited bacterium M. catarrhalis well and that naringin possessed potential ligand interactions that proved the inhibition effective against fungi. Molecular dynamics simulations of naringin demonstrated the best docking model using Gromacs during simulation up to 100 ns to explore the stability of the complex naringin and crystal structure of enzyme 2VF5: PDB.
Collapse
Affiliation(s)
- Thanh-Chi Mai
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A, TL29, District 12 Ho Chi Minh City Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Ngoc-Thinh Tran
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A, TL29, District 12 Ho Chi Minh City Vietnam
| | - Dinh-Tri Mai
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A, TL29, District 12 Ho Chi Minh City Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Tran Thi Ngoc Mai
- Institute of Applied Sciences, HUTECH University 475A Dien Bien phu Street, Ward 25, Binh Thanh District Ho Chi Minh City Vietnam
| | - Nguyen Hong Thuc Duyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City Ho Chi Minh City 71420 Vietnam
| | - Tran Nguyen Minh An
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City Ho Chi Minh City 71420 Vietnam
| | - Mahboob Alam
- Department of Safety Engineering, Dongguk University 123 Dongdae-ro Gyeongju-si 780714 Gyeongsangbuk-do Republic of Korea
| | - Chi-Hien Dang
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A, TL29, District 12 Ho Chi Minh City Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Thanh-Danh Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A, TL29, District 12 Ho Chi Minh City Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| |
Collapse
|
5
|
Doan VD, Nguyen VC, Nguyen TLH, Nguyen AT, Nguyen TD. Highly sensitive and low-cost colourimetric detection of glucose and ascorbic acid based on silver nanozyme biosynthesized by Gleditsia australis fruit. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120709. [PMID: 34894570 DOI: 10.1016/j.saa.2021.120709] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
In this study, a simple, eco-friendly and low-cost approach was used to fabricate silver nanoparticles (AgNPs) from an aqueous extract of Gleditsia australis (GA) fruit. The nanoparticles synthesized in the optimal condition have an average size of 14 nm. The peroxidase-like activity of GA-AgNP in the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in combination with hydrogen peroxide (H2O2) was investigated. Further, optimal conditions for the use of peroxidase-like catalytic activity in sensing applications were identified. The colourimetric detection of H2O2 showed a linear range of 1-8 mM with a limit of detection (LOD) of 0.34 mM. The oxidation of TMB (red-TMB) enables the detection of glucose, which is converted into H2O2 and gluconic acid in the presence of the enzyme glucose oxidase. The observations showed linearity from 0.05 to 1.5 mM with a LOD of 0.038 mM. Moreover, the blue colour of oxidized TMB (ox-TMB) was reduced according to ascorbic acid (AA) concentration, with a linear range of 0.03-0.14 mM and a LOD of 3.0 μM. The practical use of the sensing system for the detection of AA was studied using real fruit juice and showed good sensitivity. Hence, the easy-to-use peroxidase-like sensor provides a new platform for the detection of bioactive compounds in biological systems.
Collapse
Affiliation(s)
- Van-Dat Doan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Ho Chi Minh City, Vietnam
| | - Van-Cuong Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Ho Chi Minh City, Vietnam
| | - Thi-Lan-Huong Nguyen
- Institute of Biotechnology and Food Technology, Industrial university of Ho Chi Minh City, 12 Nguyen Van Bao, Ho Chi Minh City, Vietnam
| | - Anh-Tien Nguyen
- Faculty of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong, Ho Chi Minh City, Vietnam
| | - Thanh-Danh Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A, TL29, Thanh Loc Ward, District 12, Ho Chi Minh City, Vietnam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay District, Hanoi, Vietnam.
| |
Collapse
|
6
|
Le VT, Duong TG, Le VT, Phan TL, Huong Nguyen TL, Chau TP, Doan VD. Effective reduction of nitrophenols and colorimetric detection of Pb(ii) ions by Siraitia grosvenorii fruit extract capped gold nanoparticles. RSC Adv 2021; 11:15438-15448. [PMID: 35424067 PMCID: PMC8698254 DOI: 10.1039/d1ra01593a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/15/2021] [Indexed: 12/24/2022] Open
Abstract
This study presents a simple and green approach for the synthesis of Siraitia grosvenorii fruit extract capped gold nanoparticles (SG-AuNPs). The SG-AuNPs samples prepared under the optimized conditions were characterized by various techniques (UV-Vis, XRD, FTIR, HR-TEM, EDX, DLS). The biosynthesized nanoparticles were then studied for the reduction of 2-nitrophenol (2-NP) and 3-nitrophenols (3-NP) and for colorimetric detection of Pb2+ ions. The characterization results revealed that the crystals of SG-AuNPs were spherical with an average size of 7.5 nm. The FTIR and DLS analyses proved the presence of the biomolecule layer around AuNPs, which played an important role in stabilizing the nanoparticles. The SG-AuNPs showed excellent catalytic activity in the reduction of 3-NP and 2-NP, achieving complete conversion within 14 min. The catalytic process was endothermic and followed pseudo-first-order kinetics. The activation energy was determined to be 10.64 and 26.53 kJ mol-1 for 2-NP and 3-NP, respectively. SG-AuNPs maintained high catalytic performance after five recycles. The fabricated material was also found to be highly sensitive and selective to Pb2+ ions with the detection limit of 0.018 μM in a linear range of 0-1000 μM. The practicality of the material was validated through the analyses of Pb2+ in mimic pond water samples. The developed nanoparticles could find tremendous applications in environmental monitoring.
Collapse
Affiliation(s)
- Van Thuan Le
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University 03 Quang Trung Da Nang City 550000 Vietnam
- The Faculty of Environmental and Chemical Engineering, Duy Tan University 03 Quang Trung Da Nang City 550000 Vietnam
| | - Truong Giang Duong
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City 12 Nguyen Van Bao Ho Chi Minh City 700000 Vietnam
| | - Van Tan Le
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City 12 Nguyen Van Bao Ho Chi Minh City 700000 Vietnam
| | - Thanh Long Phan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City 12 Nguyen Van Bao Ho Chi Minh City 700000 Vietnam
| | - Thi Lan Huong Nguyen
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City Ho Chi Minh City 700000 Vietnam
| | - Tan Phat Chau
- Institute of Applied Science & Technology, Van Lang University Ho Chi Minh City 700000 Vietnam
| | - Van-Dat Doan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City 12 Nguyen Van Bao Ho Chi Minh City 700000 Vietnam
| |
Collapse
|