1
|
Hameed A, Asghar A, Shabbir S, Ahmed I, Tareen AK, Khan K, Hussain G, Awaji MY, Anwar H. A detailed investigation of rare earth lanthanum substitution effects on the structural, morphological, vibrational, optical, dielectric and magnetic properties of Co-Zn spinel ferrites. Front Chem 2024; 12:1433004. [PMID: 39281033 PMCID: PMC11392877 DOI: 10.3389/fchem.2024.1433004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/06/2024] [Indexed: 09/18/2024] Open
Abstract
In this work, Co0.5Zn0.5LaxFe2-xO4 (0.00 ≤ x ≤ 0.10) spinel ferrites were synthesized using the sol-gel auto-combustion method. X-ray diffraction (XRD) analysis and Rietveld refinement confirmed the presence of a cubic spinel structure. The crystallite size was estimated to be between 17.5 nm and 26.5 nm using Scherrer's method and 31.27 nm-54.52 nm using the Williamson-Hall (W-H) method. Lattice constants determined from XRD and Rietveld refinement ranged from (8.440 to 8.433 Å and 8.442 to 8.431 Å), respectively. Scanning electron microscopy (SEM) revealed a non-uniform distribution of morphology with a decrease in particle size. The bandgap values decreased from 2.0 eV to 1.68 eV with increasing rare earth (La3+) doping concentration. Fourier-transform infrared (FT-IR) spectroscopy confirmed the presence of functional groups and M-O vibrations. The dielectric constant and dielectric loss exhibited similar behavior across all samples. The maximum tan δ value obtained at lower frequencies. Regarding magnetic behavior, there was a decrease in magnetization from 55.84 emu/g to 22.08 emu/g and an increase in coercivity from 25.63 Oe to 33.88 Oe with higher doping concentrations. Based on these results, these materials exhibit promising properties for applications in microwave and energy storage devices.
Collapse
Affiliation(s)
- Anam Hameed
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Saqib Shabbir
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ishfaq Ahmed
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, China
| | | | | | - Gulzar Hussain
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Majed Yousef Awaji
- Department of Physics, Faculty of Science, Jazan University, Jazan, Saudi Arabia
- Institute Jean Lamour, University of Lorraine, Nancy, France
| | - Hafeez Anwar
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
2
|
Asghar A, Khan K, Hakami O, Alamier WM, Ali SK, Zelai T, Rashid MS, Tareen AK, Al-Harthi EA. Recent progress in metal oxide-based electrode materials for safe and sustainable variants of supercapacitors. Front Chem 2024; 12:1402563. [PMID: 38831913 PMCID: PMC11144895 DOI: 10.3389/fchem.2024.1402563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/23/2024] [Indexed: 06/05/2024] Open
Abstract
A significant amount of energy can be produced using renewable energy sources; however, storing massive amounts of energy poses a substantial obstacle to energy production. Economic crisis has led to rapid developments in electrochemical (EC) energy storage devices (EESDs), especially rechargeable batteries, fuel cells, and supercapacitors (SCs), which are effective for energy storage systems. Researchers have lately suggested that among the various EESDs, the SC is an effective alternate for energy storage due to the presence of the following characteristics: SCs offer high-power density (PD), improvable energy density (ED), fast charging/discharging, and good cyclic stability. This review highlighted and analyzed the concepts of supercapacitors and types of supercapacitors on the basis of electrode materials, highlighted the several feasible synthesis processes for preparation of metal oxide (MO) nanoparticles, and discussed the morphological effects of MOs on the electrochemical performance of the devices. In this review, we primarily focus on pseudo-capacitors for SCs, which mainly contain MOs and their composite materials, and also highlight their future possibilities as a useful application of MO-based materials in supercapacitors. The novelty of MO's electrode materials is primarily due to the presence of synergistic effects in the hybrid materials, rich redox activity, excellent conductivity, and chemical stability, making them excellent for SC applications.
Collapse
Affiliation(s)
- Ali Asghar
- Additive Manufacturing Institute, Shenzhen University, Shenzhen, China
| | - Karim Khan
- Additive Manufacturing Institute, Shenzhen University, Shenzhen, China
| | - Othman Hakami
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, Jazan, Saudi Arabia
| | - Waleed M. Alamier
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, Jazan, Saudi Arabia
| | - Syed Kashif Ali
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, Jazan, Saudi Arabia
| | - Taharh Zelai
- Department of Physical Sciences, Physics Division, College of Science, Jazan University, Jazan, Saudi Arabia
| | - Muhammad Shahid Rashid
- Department of Physical Sciences, Physics Division, College of Science, Jazan University, Jazan, Saudi Arabia
| | - Ayesha Khan Tareen
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, China
| | - Enaam A. Al-Harthi
- College of Science, Department of Chemistry, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Alamier WM, Ali SK, Qudsieh IY, Imran M, Almashnowi MYA, Ansari A, Ahmed S. Hydrothermally Synthesized Z-Scheme Nanocomposite of ZIF-9 Modified MXene for Photocatalytic Degradation of 4-Chlorophenol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6004-6015. [PMID: 38451499 DOI: 10.1021/acs.langmuir.4c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
4-Chlorophenol (4CP) is a well-known environmental contaminant often detected in wastewater, generally arising from industrial processes such as chemical manufacture, pharmaceutical production, and pesticide formulation. 4CP is a matter of great concern since it is persistent and has the potential to have harmful impacts on both aquatic ecosystems and human health, owing to its hazardous and mutagenic properties. Hence, degradation of 4CP is of utmost significance. This research investigates the photocatalytic degradation of 4CP using a novel Z-scheme heterojunction nanocomposite composed of MXene and ZIF-9. The nanocomposite is synthesized through a two-step hydrothermal method and thoroughly characterized by using XRD, SEM, UV-visible spectroscopy, zeta potential, and electrochemical impedance spectroscopy studies, confirming successful fabrication with improved surface properties. The comparative photocatalytic degradation studies between pristine materials and the nanocomposite were performed, and significant enhancement in performance was observed. The effect of pH on the degradation efficiency is also explored and correlated with the surface charge. The Z-scheme photocatalysis mechanism is proposed, which is supported by time-resolved photoluminescence studies and scavenger experiments. The reusability of the nanocomposite is also evaluated. The study contributes to the development of efficient and sustainable photocatalysts for wastewater treatment.
Collapse
Affiliation(s)
- Waleed M Alamier
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
| | - Syed Kashif Ali
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
- Nanotechnology Research Unit, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
| | - Isam Y Qudsieh
- Department of Chemical Engineering, College of Engineering, Jazan University, PO Box 706, Jazan 45142, Saudi Arabia
| | - Mohd Imran
- Department of Chemical Engineering, College of Engineering, Jazan University, PO Box 706, Jazan 45142, Saudi Arabia
| | - Majed Y A Almashnowi
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
| | - Arshiya Ansari
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342030, India
| | - Shahzad Ahmed
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342030, India
- The Institute for Lasers, Photonics, and Biophotonics/Chemistry, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| |
Collapse
|
4
|
Hussain M, Hussaini SS, Shariq M, AlMasoud N, AlZaidy GA, Hassan KF, Ali SK, Azooz RE, Siddiqui MA, Seku K. Frankincense-Based Functionalized Multiwalled Carbon Nanotubes with Iron Oxide Composites for Efficient Removal of Crystal Violet: Kinetic and Equilibrium Analysis. ACS OMEGA 2024; 9:11459-11470. [PMID: 38497024 PMCID: PMC10938398 DOI: 10.1021/acsomega.3c08011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
In this study, novel adsorbents were developed by functionalizing multiwalled carbon nanotubes with frankincense (Fr-fMWCNT) and adding iron oxide (Fe3O4) to the adsorbent (Fr-fMWCNT-Fe3O4). The morphology, surface characteristics, and chemical nature of the synthesized samples were analyzed by using various characterization techniques. The prepared adsorbents were then applied for the elimination of the toxic dye, crystal violet (CV), from water-based solutions by employing a batch adsorption method. The effectiveness of materials for the adsorption of CV was investigated by tuning various effective experimental parameters (adsorbent dosage, dye quantity, pH, and contact time). In order to derive adsorption isotherms, the Langmuir and Freundlich adsorption models were investigated and compared. The Fr-fMWCNT and Fr-fMWCNT-Fe3O4 were found to remove 85 and 95% of the CV dye within 30 min of the adsorption experiment at pH 6, respectively. It was found that a pseudo-second-order reaction rate was consistent with the experimental adsorption kinetics. The equilibrium data demonstrated that the Langmuir model adequately explained the adsorption behavior of the CV dye on the Fr-fMWCNT and Fr-fMWCNT-Fe3O4 surfaces, respectively. According to the Langmuir study, the highest adsorption capacities of the dye are 434 mg/g for Fr-fMWCNT and 500 mg/g for Fr-fMWCNT-Fe3O4. Remediation of the CV dye using our novel composite materials has not been reported previously in the literature. The synthesized Fr-fMWCNT and Fr-fMWCNT-Fe3O4 adsorbents can be economical and green materials for the adsorptive elimination of CV dye from wastewater.
Collapse
Affiliation(s)
- Mushtaq Hussain
- Engineering
Department, College of Engineering and Technology, University of Technology and Applied Sciences, Shinas 324, Oman
| | - Syed Sulaiman Hussaini
- Engineering
Department, College of Engineering and Technology, University of Technology and Applied Sciences, Shinas 324, Oman
| | - Mohammad Shariq
- Department
of Physics, Faculty of Science, Integral
University, Lucknow 226026, India
| | - Najla AlMasoud
- Department
of Chemistry, College of Science, Princess
Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ghadah Abdulrahman AlZaidy
- Department
of Physics, Faculty of Applied Science, Umm Al-Qura University, AlZahir Branch, Makkah 24383, Saudi Arabia
| | - Khaled F. Hassan
- Department
of Chemistry, College of Science, Jazan
University, Jazan 45142, Saudi Arabia
| | - Syed Kashif Ali
- Department
of Chemistry, College of Science, Jazan
University, Jazan 45142, Saudi Arabia
| | - Rehab E. Azooz
- Department
of Chemistry, College of Science, Jazan
University, Jazan 45142, Saudi Arabia
| | - Mohd Asim Siddiqui
- Engineering
Department, College of Engineering and Technology, University of Technology and Applied Sciences, Shinas 324, Oman
| | - Kondaiah Seku
- Engineering
Department, College of Engineering and Technology, University of Technology and Applied Sciences, Shinas 324, Oman
| |
Collapse
|
5
|
Hussain M, Hussaini SS, Shariq M, Alzahrani H, Alholaisi AA, Alharbi SH, Alsharif SA, Al-Gethami W, Ali SK, Alaghaz ANMA, Siddiqui MA, Seku K. Enhancing Cu 2+ Ion Removal: An Innovative Approach Utilizing Modified Frankincense Gum Combined with Multiwalled Carbon Tubes and Iron Oxide Nanoparticles as Adsorbent. Molecules 2023; 28:4494. [PMID: 37298968 PMCID: PMC10254508 DOI: 10.3390/molecules28114494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Aquatic pollution, which includes organic debris and heavy metals, is a severe issue for living things. Copper pollution is hazardous to people, and there is a need to develop effective methods for eliminating it from the environment. To address this issue, a novel adsorbent composed of frankincense-modified multi-walled carbon nanotubes (Fr-MMWCNTs) and Fe3O4 [Fr-MWCNT-Fe3O4] was created and subjected to characterization. Batch adsorption tests showed that Fr-MWCNT-Fe3O4 had a maximum adsorption capacity of 250 mg/g at 308 K and could efficiently remove Cu2+ ions over a pH range of 6 to 8. The adsorption process followed the pseudo-second-order and Langmuir models, and its thermodynamics were identified as endothermic. Functional groups on the surface of modified MWCNTs improved their adsorption capacity, and a rise in temperature increased the adsorption efficiency. These results highlight the Fr-MWCNT-Fe3O4 composites' potential as an efficient adsorbent for removing Cu2+ ions from untreated natural water sources.
Collapse
Affiliation(s)
- Mushtaq Hussain
- Engineering Department, College of Engineering and Technology, University of Technology and Applied Sciences, Shinas 324, Oman
| | - Syed Sulaiman Hussaini
- Engineering Department, College of Engineering and Technology, University of Technology and Applied Sciences, Shinas 324, Oman
| | - Mohammad Shariq
- Department of Physics, College of Science, Jazan University, Jazan 45142, Saudi Arabia
| | - Hanan Alzahrani
- Department of Physics, College of Science, Jazan University, Jazan 45142, Saudi Arabia
| | - Arafa A. Alholaisi
- Department of Physics, Al-Qunfudah University College, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Samar H. Alharbi
- Department of Physics, Al-Qunfudah University College, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Sirajah A. Alsharif
- Department of Physics, Al-Qunfudah University College, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Wafa Al-Gethami
- Chemistry Department, Faculty of Science, Taif University, Al-Hawiah, Taif City P.O. Box 11099, Saudi Arabia
| | - Syed Kashif Ali
- Department of Chemistry, College of Science, Jazan University, Jazan 45142, Saudi Arabia
| | | | - Mohd Asim Siddiqui
- Engineering Department, College of Engineering and Technology, University of Technology and Applied Sciences, Shinas 324, Oman
| | - Kondaiah Seku
- Engineering Department, College of Engineering and Technology, University of Technology and Applied Sciences, Shinas 324, Oman
| |
Collapse
|
6
|
Guan Y, Hu K, Su N, Zhang G, Han Y, An M. Review of NiS-Based Electrode Nanomaterials for Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:979. [PMID: 36985879 PMCID: PMC10056300 DOI: 10.3390/nano13060979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
As a new type of energy storage device, supercapacitors have the advantages of high-power densities, high safety factors, and low maintenance costs, so they have attracted widespread attention among researchers. However, a major problem with supercapacitors is that their energy densities are not high enough, which limits their application. Therefore, it is crucial to expand the application scenarios of supercapacitors to increase their energy density as much as possible without diminishing their advantages. The classification and working principles of supercapacitors are introduced in this paper. The electrochemical properties of pure NiS materials, NiS composites with carbon materials, NiS composites with sulfide materials, and NiS composites with transition metal oxides for supercapacitors are summarized. This paper may assist in the design of new electrode materials for NiS-based supercapacitors.
Collapse
Affiliation(s)
- Yuhao Guan
- College of New Energy, Xi’an Shiyou University, Xi’an 710065, China
| | - Kexie Hu
- College of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Nan Su
- Engineering Science and Technology College of Equipment Engineering, Shanxi Vocational University of Engineering and Technology, Taiyuan 030619, China
| | - Gaohe Zhang
- College of New Energy, Xi’an Shiyou University, Xi’an 710065, China
| | - Yujia Han
- Shanxi Research Institute for Clean Energy, Tsinghua University, Taiyuan 030032, China
| | - Minrong An
- College of New Energy, Xi’an Shiyou University, Xi’an 710065, China
| |
Collapse
|
7
|
Rauf M, Shah SS, Shah SK, Shah SNA, Haq TU, Shah J, Ullah A, Ahmad T, Khan Y, Aziz MA, Hayat K. Facile hydrothermal synthesis of zinc sulfide nanowires for high-performance asymmetric supercapacitor. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|