1
|
Habib N, Batool F, Adeel S, Naveed M, Ali A, Mia R, Assiri MA. Green extraction and application of yellow natural curcumin colorant from Curcuma aromatica rhizomes for silk dyeing. Sci Rep 2024; 14:13032. [PMID: 38844676 PMCID: PMC11156858 DOI: 10.1038/s41598-024-63927-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
Green products such as plant tints are becoming more and more well-known worldwide due to their superior biological and ayurvedic properties. In this work, colorant from Amba Haldi (Curcuma aromatica) was isolated using microwave (MW), and bio-mordants were added to produce colorfast shades. Response surface methodology was used to develop a central composite design (CCD), which maximizes coloring variables statistically. The findings from 32 series of experiments show that excellent color depth (K/S = 12.595) was established onto MW-treated silk fabric (RS = 4 min) by employing 65 mL of radiated aqueous extract (RE = 4 min) of 5 pH cutting-edge the existence of 1.5 g/100 mL used sodium chloride at 75 °C for 45 min. It was discovered that acacia (keekar) extract (1%), pomegranate extract (2%), and pistachio extract (1.5%) were present before coloring by the use of bio-mordants. On the other hand, upon dyeing, acacia extract (1.5%), pomegranate extract (1.5%), and pistachio extract (2%) have all shown extremely strong colorfast colors. Comparatively, before dyeing, salts of Al3+ (1.5%), Fe2+ (2%), and TA (1.5%) gave good results; after dyeing, salts of Al3+ (1%) and Fe2+ (1.5%) and TA (2%) gave good results. When applied to silk fabric, MW radiation has increased the production of dyes recovered from rhizomes. Additionally, the right amount of chemical and biological mordants have been added, resulting in color fastness ratings ranging from outstanding to good. Therefore, the natural color extracted from Amba Haldi can be a sustainable option for the dyeing of silk fabric in the textile dyeing and finishing industries.
Collapse
Affiliation(s)
- Noman Habib
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Fatima Batool
- Department of Botany, Division of Science and Technology, University of Education Lahore, Lahore, 54770, Pakistan
| | - Shahid Adeel
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Muhammad Naveed
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Aamir Ali
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Rony Mia
- Center for Global Health Research, Department of Medical Biotechnology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Tamil Nadu, 602105, India.
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| |
Collapse
|
2
|
Sk MS, Akram W, Mia R, Fang J, Kabir SMM. Fabrication of UV-Protective Polyester Fabric with Polysorbate 20 Incorporating Fluorescent Color. Polymers (Basel) 2022; 14:polym14204366. [PMID: 36297944 PMCID: PMC9610945 DOI: 10.3390/polym14204366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Technological advancement leads researchers to develop multifunctional materials. Considering such trends, this study aimed to conjugate dual functionality in a single material to satisfy aesthetic and functional necessities. We investigated the potentiality of polysorbate 20 to perform as an effective ultraviolet absorber to develop UV-protective fabric. Coumarin derivative (Benzoxazolyl type) disperse dyes are well-known as fluorescent colors. On the other hand, luminescence materials are conspicuous and viable for fashion trends. Deliberate utilization of this inherent property of the dye and incorporation of polysorbate fulfilled the need for dual functionality. In addition, the knitted fabric structure enhanced wearing comfort as well. The effect of polysorbate consolidated the PET fabric as an excellent UV absorber, exhibiting an ultraviolet protection factor (UPF) of 53.71 and a blocking percentage of more than 95% for both UVA and UVB. Surface morphology was studied by scanning electron microscope (SEM). Fourier transform infrared spectroscopy (FTIR) with attenuated mode was used to investigate chemical modification. Moreover, X-ray diffraction (XRD) investigated the crystallography of the surface. Reflectance spectrophotometric analysis unveiled the color strength (K/S) of the dyed polyester fabrics. Finally, light fastness assessment revealed that the developed samples could resist a certain amount of photo fading under a controlled testing environment with the increment of ratings towards betterment.
Collapse
Affiliation(s)
- Md. Salauddin Sk
- Department of Wet Process Engineering, Bangladesh University of Textiles, Tejgaon, Dhaka 1208, Bangladesh
| | - Wasim Akram
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Rony Mia
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
- Correspondence: (R.M.); (J.F.)
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Correspondence: (R.M.); (J.F.)
| | - Shekh Md. Mamun Kabir
- Department of Wet Process Engineering, Bangladesh University of Textiles, Tejgaon, Dhaka 1208, Bangladesh
| |
Collapse
|
3
|
Qureshi F, Nawaz M, Ansari MA, Khan FA, Berekaa MM, Abubshait SA, Al-Mutairi R, Paul AK, Nissapatorn V, de Lourdes Pereira M, Wilairatana P. Synthesis of M-Ag 3PO 4, (M = Se, Ag, Ta) Nanoparticles and Their Antibacterial and Cytotoxicity Study. Int J Mol Sci 2022; 23:11403. [PMID: 36232708 PMCID: PMC9569642 DOI: 10.3390/ijms231911403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022] Open
Abstract
Silver Phosphate, Ag3PO4, being a highly capable clinical molecule, an ultrasonic method was employed to synthesize the M-Ag3PO4, (M = Se, Ag, Ta) nanoparticles which were evaluated for antibacterial and cytotoxicity activities post-characterization. Escherichia coli and Staphylococcus aureus were used for antibacterial testing and the effects of sonication on bacterial growth with sub-MIC values of M-Ag3PO4 nanoparticles were examined. The effect of M-Ag3PO4 nanoparticles on human colorectal carcinoma cells (HCT-116) and human cervical carcinoma cells (HeLa cells) was examined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) assay and DAPI (4′,6-diamidino-2-phenylindole) staining. Additionally, we analyzed the effect of nanoparticles on normal and non-cancerous human embryonic kidney cells (HEK-293). Ag-Ag3PO4 exhibited enhanced antibacterial activity followed by Ta-Ag3PO4, Ag3PO4, and Se-Ag3PO4 nanoparticles against E. coli. Whereas the order of antibacterial activity against Staphylococcus aureus was Ag3PO4 > Ag-Ag3PO4 > Ta-Ag3PO4 > Se-Ag3PO4, respectively. Percentage inhibition of E. coli was 98.27, 74.38, 100, and 94.2%, while percentage inhibition of S. aureus was 25.53, 80.28, 99.36, and 20.22% after treatment with Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4, respectively. The MTT assay shows a significant decline in the cell viability after treating with M-Ag3PO4 nanoparticles. The IC50 values for Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 on HCT-116 were 39.44, 28.33, 60.24, 58.34 µg/mL; whereas for HeLa cells, they were 65.25, 61.27, 75.52, 72.82 µg/mL, respectively. M-Ag3PO4 nanoparticles did not inhibit HEK-293 cells. Apoptotic assay revealed that the numbers of DAPI stained cells were significantly lower in the M-Ag3PO4-treated cells versus control.
Collapse
Affiliation(s)
- Faiza Qureshi
- Deanship of Scientific Research, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mahmoud M. Berekaa
- Environmental Health Department, College of Public Health, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Samar A. Abubshait
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Department of Chemistry, College of Science and Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Rayyanah Al-Mutairi
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
4
|
Zhang M, Wang F, Shi X, Wei J, Yan W, Dong Y, Hu H, Wei K. Preparation and Photodegradation Properties of Carbon-Nanofiber-Based Catalysts. Polymers (Basel) 2022; 14:polym14173584. [PMID: 36080659 PMCID: PMC9460344 DOI: 10.3390/polym14173584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, an iron oxide/carbon nanofibers (Fe2O3/CNFs) composite was prepared by a combination of electrospinning and hydrothermal methods. The characterization of Fe2O3/CNFs was achieved via scanning electron microscopy (SEM), infrared spectroscopy (IR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It is shown that when the hydrothermal reaction time was 180 °C and the reaction time was 1 h, the Fe2O3 nanoparticle size was about 90 nm with uniform distribution. The photodegradation performance applied to decolorize methyl orange (MO) was investigated by forming a heterogeneous Fenton catalytic system with hydrogen peroxide. The reaction conditions for the degradation of MO were optimized with the decolorization rate up to more than 99% within 1 h, which can decompose the dyes in water effectively. The degradation process of MO by Fenton oxidation was analyzed by a UV-visible NIR spectrophotometer, and the reaction mechanism was speculated as well.
Collapse
Affiliation(s)
- Mingpan Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Fuli Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Xinran Shi
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Jing Wei
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Weixia Yan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yihang Dong
- Suzhou Best Color Nanotechnology Co., Ltd., Suzhou 215000, China
| | - Huiqiang Hu
- Guangzhou Inspection Testing and Certification Group Co., Ltd., Guangzhou 511447, China
- Correspondence: (H.H.); (K.W.)
| | - Kai Wei
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Correspondence: (H.H.); (K.W.)
| |
Collapse
|
5
|
Cherian T, Maity D, Rajendra Kumar RT, Balasubramani G, Ragavendran C, Yalla S, Mohanraju R, Peijnenburg WJGM. Green Chemistry Based Gold Nanoparticles Synthesis Using the Marine Bacterium Lysinibacillus odysseyi PBCW2 and Their Multitudinous Activities. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172940. [PMID: 36079977 PMCID: PMC9458051 DOI: 10.3390/nano12172940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 05/24/2023]
Abstract
Green chemistry has paved an 'avant-garde avenue' in the production and fabrication of eco-friendly stable nanoparticles employing the utilization of biological agents. In the present study we present the first report on the potential of the marine bacterium Lysinibacillus odysseyi PBCW2 for the extracellular production of gold nanoparticles (AuNPs). Utilizing a variety of methods, AuNPs in the cell-free supernatant of L. odysseyi (CFS-LBOE) were identified and their antioxidant, antibacterial, and dye-degrading properties were examined. The visual coloring of the reaction mixture to a ruby red hue showed the production of LBOE-AuNPs; validated by means of XRD, TEM, SEM, XRD, DLS, TGA, and FT-IR analysis. Additionally, the 2,2-diphenyl-1-picrylhydrazyl technique and the well diffusion assay were used to examine their dose-dependent antioxidant and antibacterial activity. These biogenic LBOE-AuNPs showed 91% dye degradation efficiency during catalytic reduction activity on BTB dye, demonstrating their versatility as options for heterogeneous catalysis.
Collapse
Affiliation(s)
- Tijo Cherian
- Department of Ocean Studies and Marine Biology, Pondicherry University—Port Blair Campus, Port Blair 744 112, Andaman and Nicobar Islands, India
- Aquatic Animal Health and Environment Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai 600 028, Tamil Nadu, India
| | - Debasis Maity
- ETH Zürich—Department of Biosystems Science and Engineering ETH (D-BSSE ETH Zürich), Mattenstrasse 26, 4058 Basel, Switzerland
| | - Ramasamy T. Rajendra Kumar
- Advanced Materials and Research Laboratory (AMDL), Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Govindasamy Balasubramani
- Department of Biotechnology, Division of Research & Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveethanagar, Chennai 602 105, Tamil Nadu, India
| | - Chinnasamy Ragavendran
- Department of Biotechnology, School of Biosciences, Periyar University, Salem 636 011, Tamil Nadu, India
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamil Nadu, India
| | - Suneelkumar Yalla
- Department of Ocean Studies and Marine Biology, Pondicherry University—Port Blair Campus, Port Blair 744 112, Andaman and Nicobar Islands, India
| | - Raju Mohanraju
- Department of Ocean Studies and Marine Biology, Pondicherry University—Port Blair Campus, Port Blair 744 112, Andaman and Nicobar Islands, India
| | - Willie J. G. M. Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA Leiden, The Netherlands
- National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| |
Collapse
|