Liu Z, Xiong Y, Min J, Zhu Y. Dexmedetomidine improves lung injury after one-lung ventilation in esophageal cancer patients by inhibiting inflammatory response and oxidative stress.
Toxicol Res (Camb) 2024;
13:tfae041. [PMID:
38617713 PMCID:
PMC11007265 DOI:
10.1093/toxres/tfae041]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 04/16/2024] Open
Abstract
Aim
To explore the effect of Dexmedetomidine (DEX) on lung injury in patients undergoing One-lung ventilation (OLV).
Methods
Esophageal cancer patients undergoing general anesthesia with OLV were randomly divided into the DEX group and control group, with 30 cases in each group. Mean arterial pressure (MAP), heart rate (HR), arterial partial pressure of oxygen (PO2), and arterial partial pressure of nitrogen dioxide (PCO2) were recorded at the time points after anesthesia induction and before OLV (T1), OLV 30 min (T2), OLV 60 min (T3), OLV 120 min (T4), OLV end before (T5) and before leaving the room (T6) in both groups. Reverse Transcription-Polymerase Chain Reaction (RT-qPCR) was applied to detect the levels of CC16 mRNA. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum CC16 protein levels. The content of malondialdehyde (MDA) in serum was determined by thio barbituric acid (TBA) method. ELISA was used to measure the concentrations of TNF-α (tumor necrosis factor-alpha)/and IL-6 (interleukin 6).
Results
DEX treatment slowed down HR at time points T1-T6 and increased PO2 and PCO2 at time points T2-T5 compared with the control group. Moreover, at time points T2-T6, DEX treatment reduced the levels of club cell secretory protein-16 (CC16) mRNA and serum CC16 protein levels. Furthermore, DEX treatment caused the reduction of MDA, TNF-α and IL-6 concentrations in serum of patients.
Conclusion
During the OLV process, DEX could reduce serum CC16 protein levels, inhibit inflammatory reactions and oxidative stress, and improve oxygenation index, indicating a protective effect on lung injury during OLV.
Collapse