1
|
van Wyk L, Austin T, Barzilay B, Bravo MC, Breindahl M, Czernik C, Dempsey E, de Boode WP, de Vries W, Eriksen BH, Fauchére JC, Kooi EMW, Levy PT, McNamara PJ, Mitra S, Nestaas E, Rabe H, Rabi Y, Rogerson SR, Savoia M, Schena F, Sehgal A, Schwarz CE, Thome U, van Laere D, Zaharie GC, Gupta S. A recommendation for the use of electrical biosensing technology in neonatology. Pediatr Res 2024:10.1038/s41390-024-03369-z. [PMID: 38977797 DOI: 10.1038/s41390-024-03369-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/17/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024]
Abstract
Non-invasive cardiac output monitoring, via electrical biosensing technology (EBT), provides continuous, multi-parameter hemodynamic variable monitoring which may allow for timely identification of hemodynamic instability in some neonates, providing an opportunity for early intervention that may improve neonatal outcomes. EBT encompasses thoracic (TEBT) and whole body (WBEBT) methods. Despite the lack of relative accuracy of these technologies, as compared to transthoracic echocardiography, the use of these technologies in neonatology, both in the research and clinical arena, have increased dramatically over the last 30 years. The European Society of Pediatric Research Special Interest Group in Non-Invasive Cardiac Output Monitoring, a group of experienced neonatologists in the field of EBT, deemed it appropriate to provide recommendations for the use of TEBT and WBEBT in the field of neonatology. Although TEBT is not an accurate determinant of cardiac output or stroke volume, it may be useful for monitoring longitudinal changes of hemodynamic parameters. Few recommendations can be made for the use of TEBT in common neonatal clinical conditions. It is recommended not to use WBEBT to monitor cardiac output. The differences in technologies, study methodologies and data reporting should be addressed in ongoing research prior to introducing EBT into routine practice. IMPACT STATEMENT: TEBT is not recommended as an accurate determinant of cardiac output (CO) (or stroke volume (SV)). TEBT may be useful for monitoring longitudinal changes from baseline of hemodynamic parameters on an individual patient basis. TEBT-derived thoracic fluid content (TFC) longitudinal changes from baseline may be useful in monitoring progress in respiratory disorders and circulatory conditions affecting intrathoracic fluid volume. Currently there is insufficient evidence to make any recommendations regarding the use of WBEBT for CO monitoring in neonates. Further research is required in all areas prior to the implementation of these monitors into routine clinical practice.
Collapse
Affiliation(s)
- Lizelle van Wyk
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa.
| | - Topun Austin
- Neonatal Intensive Care Unit, Rosie Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Bernard Barzilay
- Neonatal Intensive Care Unit, Assaf Harofeh Medical Center, Tzrifin, Israel
| | - Maria Carmen Bravo
- Department of Neonatology, La Paz University Hospital and IdiPaz, Madrid, Spain
| | - Morten Breindahl
- Department of Neonatology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Christoph Czernik
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eugene Dempsey
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Willem-Pieter de Boode
- Department of Neonatology, Radboud University Medical Center, Radboud Institute for Health Sciences, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Willem de Vries
- Division of Woman and Baby, Department of Neonatology, University Medical Centre Utrecht, Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Beate Horsberg Eriksen
- Department of Paediatrics, Møre and Romsdal Hospital Trust, Ålesund, Norway
- Clinical Research Unit, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jean-Claude Fauchére
- Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Elisabeth M W Kooi
- Division of Neonatology, Department of Pediatrics, Beatrix Children's Hospital, University of Groningen, University Medical Centre, Groningen, The Netherlands
| | - Philip T Levy
- Department of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | | | - Subhabrata Mitra
- Institute for Women's Health, University College London, London, UK
| | - Eirik Nestaas
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Clinic of Paediatrics and Adolescence, Akershus University Hospital, Lørenskog, Norway
| | - Heike Rabe
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | | | - Sheryle R Rogerson
- Newborn Research Centre, The Royal Women's Hospital, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, VIC, Australia
| | - Marilena Savoia
- Neonatal Intensive Care Unit, S Maria Della Misericordia Hospital, Udine, Italy
| | | | - Arvind Sehgal
- Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Christoph E Schwarz
- Department of Neonatology, Center for Pediatric and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Ulrich Thome
- Division of Neonatology, Department of Pediatrics, University of Leipzig Medical Centre, Leipzig, Germany
| | - David van Laere
- Neonatal Intensive Care Unit, Universitair Ziekenhuis, Antwerp, Belgium
| | - Gabriela C Zaharie
- Neonatology Department, University of Medicine and Pharmacy, Iuliu Hatieganu, Cluj -Napoca, Romania
| | - Samir Gupta
- Department of Engineering, Durham University, Durham, UK
- Division of Neonatology, Department of Pediatrics, Sidra Medicine, Doha, Qatar
| |
Collapse
|
2
|
Van Wyk L, Gupta S, Lawrenson J, de Boode WP. Accuracy and Trending Ability of Electrical Biosensing Technology for Non-invasive Cardiac Output Monitoring in Neonates: A Systematic Qualitative Review. Front Pediatr 2022; 10:851850. [PMID: 35372144 PMCID: PMC8968571 DOI: 10.3389/fped.2022.851850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/14/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Electrical biosensing technology (EBT) is an umbrella term for non-invasive technology utilizing the body's fluctuating resistance to electrical current flow to estimate cardiac output. Monitoring cardiac output in neonates may allow for timely recognition of hemodynamic compromise and allow for prompt therapy, thereby mitigating adverse outcomes. For a new technology to be safely used in the clinical environment for therapeutic decisions, it must be proven to be accurate, precise and be able to track temporal changes. The aim of this systematic review was to identify and analyze studies that describe the accuracy, precision, and trending ability of EBT to non-invasively monitor Left ventricular cardiac output and/or stroke volume in neonates. METHODS A qualitative systematic review was performed. Studies were identified from PubMed NCBI, SCOPUS, and EBSCOHost up to November 2021, where EBT technologies were analyzed in neonates, in comparison to a reference technology. Outcome measures were bias, limits of agreement, percentage error for agreement studies and data from 4-quadrant and polar plots for trending studies. Effect direction plots were used to present results. RESULTS Fifteen neonatal studies were identified, 14 for agreement and 1 for trending analysis. Only thoracic electrical biosensing technology (TEBT), with transthoracic echocardiography (TTE) as the comparator, studies were available for analyzes. High heterogeneity existed between studies. An equal number of studies showed over- and underestimation of left ventricular output parameters. All studies showed small bias, wide limits of agreement, with most studies having a percentage error >30%. Sub-analyses for respiratory support mode, cardiac anomalies and type of technology showed similar results. The single trending study showed poor concordance, high angular bias, and poor angular concordance. DISCUSSION Overall, TEBT shows reasonable accuracy, poor precision, and non-interchangeability with TTE. However, high heterogeneity hampered proper analysis. TEBT should be used with caution in the neonatal population for monitoring and determining therapeutic interventions. The use of TEBT trend monitoring has not been sufficiently studied and requires further evaluation in future trials.
Collapse
Affiliation(s)
- Lizelle Van Wyk
- Division Neonatology, Department of Pediatrics and Child Health, Stellenbosch University and Tygerberg Children's Hospital, Cape Town, South Africa
| | - Samir Gupta
- Department of Engineering and Medical Physics, Durham University, Durham, United Kingdom.,Division of Neonatology, Sidra Medicine, Doha, Qatar
| | - John Lawrenson
- Pediatric Cardiology Unit, Department of Pediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| | - Willem-Pieter de Boode
- Division of Neonatology, Department of Perinatology, Radboud University Medical Center, Radboud Institute for Health Sciences, Amalia Children's Hospital, Nijmegen, Netherlands
| |
Collapse
|
3
|
Hassan MA, Bryant MB, Hummler HD. Comparison of Cardiac Output Measurement by Electrical Velocimetry with Echocardiography in Extremely Low Birth Weight Neonates. Neonatology 2022; 119:18-25. [PMID: 34724661 DOI: 10.1159/000519713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/16/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Electrical velocimetry (EV) offers a noninvasive tool for continuous cardiac output (CO) measurements which might facilitate hemodynamic monitoring and targeted therapy in low birth neonates, in whom other methods of CO measurement are not practicably feasible. METHODS This prospective observational study compared simultaneous cardiac output measurements by electrical velocimetry (COEV) with transthoracic echocardiography (COTTE) in extremely low birth weight (ELBW) neonates in the neonatal intensive care unit (NICU). Echocardiography was performed by 1 single examiner. Data were analyzed by Bland-Altman analysis and independent-samples analysis of variance. A mean percentage error (MPE) of <30% and limits of agreement (LOA) up to ±30% were considered clinically acceptable. RESULTS Thirty-eight ELBW neonates were studied and yielded 85 pairs of COEV and COTTE measurements. Bland-Altman analysis showed an overall bias (the mean difference) and LOA of -126 and -305 to +52 mL min-1, respectively, and an MPE of 66%. Patients with patent ductus arteriosus had a higher bias with LOA and MPE of -166.8, -370.7 to +37 mL min-1, and 69%, respectively. The overall true precision was 58%. CONCLUSION This study showed high bias and lack of agreement between EV and TTE for measurement of CO in ELBW infants in NICU, limiting applicability of EV to monitor absolute values.
Collapse
Affiliation(s)
- Mohammad Ahmad Hassan
- Department of Pediatrics, Sohag Faculty of Medicine, Sohag University, Sohag, Egypt.,Division of Neonatology and Pediatric Critical Care, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Manuel B Bryant
- Division of Neonatology and Pediatric Critical Care, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany.,Neonatal Department, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Helmut D Hummler
- Division of Neonatology and Pediatric Critical Care, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany.,Department of Neonatology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
4
|
Cardiac Output Measurement in Neonates and Children Using Noninvasive Electrical Bioimpedance Compared With Standard Methods: A Systematic Review and Meta-Analysis. Crit Care Med 2021; 50:126-137. [PMID: 34325447 DOI: 10.1097/ccm.0000000000005144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To systematically review and meta-analyze the validity of electrical bioimpedance-based noninvasive cardiac output monitoring in pediatrics compared with standard methods such as thermodilution and echocardiography. DATA SOURCES Systematic searches were conducted in MEDLINE and EMBASE (2000-2019). STUDY SELECTION Method-comparison studies of transthoracic electrical velocimetry or whole body electrical bioimpedance versus standard cardiac output monitoring methods in children (0-18 yr old) were included. DATA EXTRACTION Two reviewers independently performed study selection, data extraction, and risk of bias assessment. Mean differences of cardiac output, stroke volume, or cardiac index measurements were pooled using a random-effects model (R Core Team, R Foundation for Statistical Computing, Vienna, Austria, 2019). Bland-Altman statistics assessing agreement between devices and author conclusions about inferiority/noninferiority were extracted. DATA SYNTHESIS Twenty-nine of 649 identified studies were included in the qualitative analysis, and 25 studies in the meta-analyses. No significant difference was found between means of cardiac output, stroke volume, and cardiac index measurements, except in exclusively neonatal/infant studies reporting stroke volume (mean difference, 1.00 mL; 95% CI, 0.23-1.77). Median percentage error in child/adolescent studies approached acceptability (percentage error less than or equal to 30%) for cardiac output in L/min (31%; range, 13-158%) and stroke volume in mL (26%; range, 14-27%), but not in neonatal/infant studies (45%; range, 29-53% and 45%; range, 28-70%, respectively). Twenty of 29 studies concluded that transthoracic electrical velocimetry/whole body electrical bioimpedance was noninferior. Transthoracic electrical velocimetry was considered inferior in six of nine studies with heterogeneous congenital heart disease populations. CONCLUSIONS The meta-analyses demonstrated no significant difference between means of compared devices (except in neonatal stroke volume studies). The wide range of percentage error reported may be due to heterogeneity of study designs, devices, and populations included. Transthoracic electrical velocimetry/whole body electrical bioimpedance may be acceptable for use in child/adolescent populations, but validity in neonates and congenital heart disease patients remains uncertain. Larger studies in specific clinical contexts with standardized methodologies are required.
Collapse
|
5
|
Barrington K, El-Khuffash A, Dempsey E. Intervention and Outcome for Neonatal Hypotension. Clin Perinatol 2020; 47:563-574. [PMID: 32713451 DOI: 10.1016/j.clp.2020.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Many observational studies have shown that infants with blood pressures (BPs) that are in the lower range for their gestational age tend to have increased complications such as an increased rate of significant intraventricular hemorrhage and adverse long-term outcome. This relationship does not prove causation nor should it create an indication for treatment. However, many continue to intervene with medication for low BP on the assumption that an increase in BP will result in improved outcome. Only adequately powered prospective randomized controlled trials can answer the question of whether individual treatments of low BP are beneficial.
Collapse
Affiliation(s)
| | - Afif El-Khuffash
- The Rotunda Hospital, Dublin and Royal College of Surgeons, Dublin, Ireland
| | - Eugene Dempsey
- Department of Paediatrics and Child Health, INFANT Centre, University College Cork, Ireland.
| |
Collapse
|
6
|
Van Wyk L, Smith J, Lawrenson J, de Boode WP. Agreement of Cardiac Output Measurements between Bioreactance and Transthoracic Echocardiography in Preterm Infants during the Transitional Phase: A Single-Centre, Prospective Study. Neonatology 2020; 117:271-278. [PMID: 32114576 DOI: 10.1159/000506203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/28/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Bioreactance cardiac output (CO) monitors are able to non-invasively and continuously monitor CO. However, as a novel tool to measure CO, it must be proven to be accurate and precise. OBJECTIVE To determine the agreement between CO measured with a bioreactance monitor and transthoracic echocardiography-derived left ventricular output parameters in preterm infants. METHODS This is a prospective observational study in 63 preterm neonates with non-invasive respiratory support, not requiring inotrope support. The infants underwent continuous bioreactance monitoring of CO and stroke volume (SV) and simultaneous transthoracic echocardiography every 6 h until 72 h of life. RESULTS The agreement between bioreactance and transthoracic echocardiography, for both SV and CO, was poor. The percentage error was 67.5% for SV and 71.6% for CO. The mean error was 60.4% for SV and 69.8% for CO. Bias was affected by numerous variables. After correcting for time, CO and SV bias were significantly affected by the presence of an open patent ductus arteriosus and the level of CO. CONCLUSION Bioreactance cannot be considered interchangeable with transthoracic echocardiography to measure CO in preterm infants during the transition phase. Agreement between bioreactance and other CO metrics should be assessed before concluding its accuracy or inaccuracy in neonates.
Collapse
Affiliation(s)
- Lizelle Van Wyk
- Division Neonatology, Department of Paediatrics and Child Health, Stellenbosch University and Tygerberg Children's Hospital, Cape Town, South Africa,
| | - Johan Smith
- Division Neonatology, Department of Paediatrics and Child Health, Stellenbosch University and Tygerberg Children's Hospital, Cape Town, South Africa
| | - John Lawrenson
- Paediatric Cardiology Unit, Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| | - Willem Pieter de Boode
- Department of Neonatology, Radboud University Medical Center, Radboud Institute for Health Sciences, Amalia Children's Hospital, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Sanders M, Servaas S, Slagt C. Accuracy and precision of non-invasive cardiac output monitoring by electrical cardiometry: a systematic review and meta-analysis. J Clin Monit Comput 2019; 34:433-460. [PMID: 31175501 PMCID: PMC7205855 DOI: 10.1007/s10877-019-00330-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022]
Abstract
Cardiac output monitoring is used in critically ill and high-risk surgical patients. Intermittent pulmonary artery thermodilution and transpulmonary thermodilution, considered the gold standard, are invasive and linked to complications. Therefore, many non-invasive cardiac output devices have been developed and studied. One of those is electrical cardiometry. The results of validation studies are conflicting, which emphasize the need for definitive validation of accuracy and precision. We performed a database search of PubMed, Embase, Web of Science and the Cochrane Library of Clinical Trials to identify studies comparing cardiac output measurement by electrical cardiometry and a reference method. Pooled bias, limits of agreement (LoA) and mean percentage error (MPE) were calculated using a random-effects model. A pooled MPE of less than 30% was considered clinically acceptable. A total of 13 studies in adults (620 patients) and 11 studies in pediatrics (603 patients) were included. For adults, pooled bias was 0.03 L min-1 [95% CI - 0.23; 0.29], LoA - 2.78 to 2.84 L min-1 and MPE 48.0%. For pediatrics, pooled bias was - 0.02 L min-1 [95% CI - 0.09; 0.05], LoA - 1.22 to 1.18 L min-1 and MPE 42.0%. Inter-study heterogeneity was high for both adults (I2 = 93%, p < 0.0001) and pediatrics (I2 = 86%, p < 0.0001). Despite the low bias for both adults and pediatrics, the MPE was not clinically acceptable. Electrical cardiometry cannot replace thermodilution and transthoracic echocardiography for the measurement of absolute cardiac output values. Future research should explore it's clinical use and indications.
Collapse
Affiliation(s)
- M Sanders
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6500 HB, Nijmegen, The Netherlands
| | - S Servaas
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6500 HB, Nijmegen, The Netherlands
| | - C Slagt
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
8
|
Cerebral oxygenation in preterm infants receiving transfusion. Pediatr Res 2019; 85:786-789. [PMID: 30587847 DOI: 10.1038/s41390-018-0266-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND The influence of severity of anemia and cardiac output (CO) on cerebral oxygenation (CrSO2) and on the change in CrSO2 following packed red blood cell (PRBC) transfusion in preterm infants has not been evaluated. The objectives of the current study were to evaluate the effect of pre-transfusion hemoglobin (Hb) and CO-weighted oxygen delivery index (ODI) on CrSO2 and on the post-transfusion CrSO2 change. METHODS Preterm infants of <32 weeks gestational age (GA) receiving PRBC transfusion were enrolled. Infants received 15 ml/kg PRBC over 3 h. CrSO2 by near-infrared spectroscopy and CO by electrical velocimetry were recorded for 1 h pre-ransfusion and post transfusion. ODI was defined as pre-transfusion Hb × CO. RESULTS Thirty infants of 26.6 ± 2.0 weeks GA were studied at 19 ± 12 days. Pre-transfusion Hb was 9.8 ± 0.6 g/dl. Pre-transfusion CrSO2 correlated with pre-transfusion ODI (R2 = 0.1528, p = .044) but not with Hb level. The pre-transfusion to post-transfusion CrSO2 change correlated with pre-transfusion ODI (R2 = 0.1764, p = .029) but not with Hb level. CrSO2 increased from 66 ± 6% to 72 ± 7% post transfusion (p < .001), while arterial oxygen saturation, heart rate, and CO did not change. CONCLUSION In these infants, the pre-transfusion ODI was a better indicator of brain oxygenation and its improvement post transfusion than Hb alone. The role of CO and tissue oxygenation monitoring in assessing the need for transfusion should be evaluated.
Collapse
|
9
|
Saugel B, Bendjelid K, Critchley LAH, Scheeren TWL. Journal of Clinical Monitoring and Computing 2017 end of year summary: cardiovascular and hemodynamic monitoring. J Clin Monit Comput 2018; 32:189-196. [PMID: 29484529 DOI: 10.1007/s10877-018-0119-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 12/23/2022]
Abstract
Hemodynamic monitoring provides the basis for the optimization of cardiovascular dynamics in intensive care medicine and anesthesiology. The Journal of Clinical Monitoring and Computing (JCMC) is an ideal platform to publish research related to hemodynamic monitoring technologies, cardiovascular (patho)physiology, and hemodynamic treatment strategies. In this review, we discuss selected papers published on cardiovascular and hemodynamic monitoring in the JCMC in 2017.
Collapse
Affiliation(s)
- Bernd Saugel
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Karim Bendjelid
- Department of Anesthesiology and Intensive Care, Geneva University Hospitals, Geneva, Switzerland
| | - Lester A H Critchley
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong.,The Belford Hospital, Fort William, The Highlands, Scotland, UK
| | - Thomas W L Scheeren
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
10
|
Rodríguez Sánchez de la Blanca A, Sánchez Luna M, González Pacheco N, Arriaga Redondo M, Navarro Patiño N. Electrical velocimetry for non-invasive monitoring of the closure of the ductus arteriosus in preterm infants. Eur J Pediatr 2018; 177:229-235. [PMID: 29222766 DOI: 10.1007/s00431-017-3063-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 11/25/2022]
Abstract
UNLABELLED Closure of a patent ductus arteriosus (PDA) in preterm infants modifies cardiac output and induces adaptive changes in the hemodynamic situation. The present study aims to analyze those changes, through a non-invasive cardiac output monitor based on blood electrical velocimetry, in preterm babies. A prospective observational study of preterm infants with a gestational age of less than 28 weeks, and a hemodynamic significant PDA, requires intravenous ibuprofen or surgical closure. All patients were monitored with electrical velocimetry before treatment and through the following 72 h. Two groups were defined, ibuprofen and surgical closure. Variations of cardiac output were analyzed from the basal situation and at 1, 8, 24, 48, and 72 h on each group. During a 12-month period, 18 patients were studied. The median gestational age in the ibuprofen group (12/18) was 26+5 weeks (25+5-27+3) with a median birth weight of 875 (670-1010) g. The cardiac output index (CI) value was 0.29 l/kg/min (0.24-0.34). Among the patients with confirmed ductus closure (50%), a significant CI decrease was shown (0.24 vs 0.29 l/kg/min; P 0.03) after 72 h (three ibuprofen doses). A statistically significant decrease in systolic volume (SVI) was found: 1.62 vs 1.88 ml/kg, P 0.03 with a decrease in contractility (ICON), 85 vs 140, P 0.02. The gestational age in the surgical group (6/18) was 25+2 weeks (24-26+3) with a median weight of 745 (660-820) g. All patients in this group showed a decrease in the immediate postoperative CI (1 h after surgery) 0.24 vs 0.30 l/kg/min, P 0.05, and a significant decrease in contractility (ICON 77 vs 147, P 0.03). In addition, a no statistically significant decrease in SVI (1.54 vs 1.83 ml/kg, P 0.06), as well as an increase in systemic vascular resistance (10,615 vs 8797 dyn/cm2, P 0.08), were detected. This deterioration was transient without significant differences in the remaining periods of time evaluated. CONCLUSION The surgical closure of the PDA in preterm infants causes a transient deterioration of cardiac function linked to a documented decrease in the left ventricular output. The hemodynamic changes detected after pharmacological PDA closure are similar but those patients present a better clinical tolerance to changes in the cardiac output. What is Known: • Surgical ductus closure generates acute hemodynamic changes in cardiac output and left ventricular function. What is New: • The hemodynamic changes detected after pharmacological ductus closure are similar to those found in the surgical closure. Electrical velocimetry can detect those changes.
Collapse
Affiliation(s)
| | - M Sánchez Luna
- Neonatology Division, HGU Gregorio Marañón, C/ O'Donnell 48, 28009, Madrid, Spain
| | - N González Pacheco
- Neonatology Division, HGU Gregorio Marañón, C/ O'Donnell 48, 28009, Madrid, Spain
| | - M Arriaga Redondo
- Neonatology Division, HGU Gregorio Marañón, C/ O'Donnell 48, 28009, Madrid, Spain
| | - N Navarro Patiño
- Neonatology Division, HGU Gregorio Marañón, C/ O'Donnell 48, 28009, Madrid, Spain
| |
Collapse
|