1
|
Tsai YM, Lin YC, Chen CY, Chien HC, Chang H, Chiang MH. Leveraging Hypotension Prediction Index to Forecast LPS-Induced Acute Lung Injury and Inflammation in a Porcine Model: Exploring the Role of Hypoxia-Inducible Factor in Circulatory Shock. Biomedicines 2024; 12:1665. [PMID: 39200130 PMCID: PMC11351327 DOI: 10.3390/biomedicines12081665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a critical illness in critically unwell patients, characterized by refractory hypoxemia and shock. This study evaluates an early detection tool and investigates the relationship between hypoxia and circulatory shock in ARDS, to improve diagnostic precision and therapy customization. We used a porcine model, inducing ARDS with mechanical ventilation and intratracheal plus intravenous lipopolysaccharide (LPS) injection. Hemodynamic changes were monitored using an Acumen IQ sensor and a ForeSight Elite sensor connected to the HemoSphere platform. We evaluated tissue damage, inflammatory response, and hypoxia-inducible factor (HIF) alterations using enzyme-linked immunosorbent assay and immunohistochemistry. The results showed severe hypotension and increased heart rates post-LPS exposure, with a notable rise in the hypotension prediction index (HPI) during acute lung injury (p = 0.024). Tissue oxygen saturation dropped considerably in the right brain region. Interestingly, post-injury HIF-2α levels were lower at the end of the experiment. Our findings imply that the HPI can effectively predict ARDS-related hypotension. HIF expression levels may serve as possible markers of rapid ARDS progression. Further research should be conducted on the clinical value of this novel approach in critical care, as well as the relationship between the HIF pathway and ARDS-associated hypotension.
Collapse
Affiliation(s)
- Yuan-Ming Tsai
- Division of Thoracic Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114201, Taiwan;
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei 114201, Taiwan; (C.-Y.C.); (H.-C.C.)
| | - Yu-Chieh Lin
- Department of Pathology and Laboratory Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 325208, Taiwan;
| | - Chih-Yuan Chen
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei 114201, Taiwan; (C.-Y.C.); (H.-C.C.)
| | - Hung-Che Chien
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei 114201, Taiwan; (C.-Y.C.); (H.-C.C.)
| | - Hung Chang
- Division of Thoracic Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114201, Taiwan;
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei 114201, Taiwan; (C.-Y.C.); (H.-C.C.)
| | - Ming-Hsien Chiang
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 114201, Taiwan
- Department of Nutritional Science, College of Human Ecology, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| |
Collapse
|
2
|
Vokuhl C, Briesenick L, Saugel B. [Intraoperative Hemodynamic Monitoring and Management]. Anasthesiol Intensivmed Notfallmed Schmerzther 2022; 57:104-114. [PMID: 35172341 DOI: 10.1055/a-1390-3569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Postoperative deaths are a consequence of postoperative complications - including acute kidney injury and myocardial injury. Postoperative complications are associated with non-modifiable patient-specific risk factors (i.e., age, medical history), but also with potentially modifiable risk factors - including intraoperative hypotension and compromised intraoperative blood flow. Based on patient- and surgery-specific risk factors, the intraoperative hemodynamic monitoring strategy needs to be selected. Intraoperative hypotension is associated with postoperative organ failure and should thus be avoided. To optimize intraoperative hemodynamics, cardiac output-guided hemodynamic management has been proposed. Cardiac output-guided hemodynamic management aims at optimizing oxygen delivery using fluids, vasopressors, and inotropes. Cardiac output-guided hemodynamic management has been shown to reduce postoperative complications compared to routine hemodynamic management in high-risk patients having major surgery.
Collapse
|
3
|
|
4
|
Poterman M, Kalmar AF, Buisman PL, Struys MMRF, Scheeren TWL. Improved haemodynamic stability and cerebral tissue oxygenation after induction of anaesthesia with sufentanil compared to remifentanil: a randomised controlled trial. BMC Anesthesiol 2020; 20:258. [PMID: 33028197 PMCID: PMC7541228 DOI: 10.1186/s12871-020-01174-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/24/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Balanced anaesthesia with propofol and remifentanil, compared to sufentanil, often decreases mean arterial pressure (MAP), heart rate (HR) and cardiac index (CI), raising concerns on tissue-oxygenation. This distinct haemodynamic suppression might be attenuated by atropine. This double blinded RCT, investigates if induction with propofol-sufentanil results in higher CI and tissue-oxygenation than with propofol-remifentanil and if atropine has more pronounced beneficial effects on CI and tissue-oxygenation in a remifentanil-based anaesthesia. METHODS In seventy patients scheduled for coronary bypass grafting (CABG), anaesthesia was induced and maintained with propofol target controlled infusion (TCI) with a target effect-site concentration (Cet) of 2.0 μg ml- 1 and either sufentanil (TCI Cet 0.48 ng ml- 1) or remifentanil (TCI Cet 8 ng ml- 1). If HR dropped below 60 bpm, methylatropine (1 mg) was administered intravenously. Relative changes (∆) in MAP, HR, stroke volume (SV), CI and cerebral (SctO2) and peripheral (SptO2) tissue-oxygenation during induction of anaesthesia and after atropine administration were analysed. RESULTS The sufentanil group compared to the remifentanil group showed significantly less decrease in MAP (∆ = - 23 ± 13 vs. -36 ± 13 mmHg), HR (∆ = - 5 ± 7 vs. -10 ± 10 bpm), SV (∆ = - 23 ± 18 vs. -35 ± 19 ml) and CI (∆ = - 0.8 (- 1.5 to - 0.5) vs. -1.5 (- 2.0 to - 1.1) l min- 1 m- 2), while SctO2 (∆ = 9 ± 5 vs. 6 ± 4%) showed more increase with no difference in ∆SptO2 (∆ = 8 ± 7 vs. 8 ± 8%). Atropine caused higher ∆HR (13 (9 to 19) vs. 10 ± 6 bpm) and ∆CI (0.4 ± 0.4 vs. 0.2 ± 0.3 l min- 1 m- 2) in sufentanil vs. remifentanil-based anaesthesia, with no difference in ∆MAP, ∆SV and ∆SctO2 and ∆SptO2. CONCLUSION Induction of anaesthesia with propofol and sufentanil results in improved haemodynamic stability and higher SctO2 compared to propofol and remifentanil in patients having CABG. Administration of atropine might be useful to counteract or prevent the haemodynamic suppression associated with these opioids. TRIAL REGISTRATION Clinicaltrials.gov on June 7, 2013 (trial ID: NCT01871935 ).
Collapse
Affiliation(s)
- Marieke Poterman
- Department of Anaesthesiology, University Medical Center Groningen, Hanzeplein 1, PO Box 30 001, 9700, RB, Groningen, The Netherlands.
| | - Alain F Kalmar
- Department of Anaesthesiology, University Medical Center Groningen, Hanzeplein 1, PO Box 30 001, 9700, RB, Groningen, The Netherlands
- Department of Anaesthesiology, AZ Maria Middelares Gent Buitenring Sint-Denijs 30, 9000, Ghent, Belgium
| | - Pieter L Buisman
- Department of Anaesthesiology, University Medical Center Groningen, Hanzeplein 1, PO Box 30 001, 9700, RB, Groningen, The Netherlands
| | - Michel M R F Struys
- Department of Anaesthesiology, University Medical Center Groningen, Hanzeplein 1, PO Box 30 001, 9700, RB, Groningen, The Netherlands
| | - Thomas W L Scheeren
- Department of Anaesthesiology, University Medical Center Groningen, Hanzeplein 1, PO Box 30 001, 9700, RB, Groningen, The Netherlands
| |
Collapse
|
5
|
Are Peripherally Inserted Central Catheters Suitable for Cardiac Output Assessment With Transpulmonary Thermodilution?*. Crit Care Med 2019; 47:1356-1361. [DOI: 10.1097/ccm.0000000000003917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
6
|
|
7
|
Skowno JJ. Hemodynamic monitoring in children with heart disease: Overview of newer technologies. Paediatr Anaesth 2019; 29:467-474. [PMID: 30667124 DOI: 10.1111/pan.13590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/26/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Justin J Skowno
- Department of Anaesthesia, The Children's Hospital at Westmead, Sydney, NSW, Australia.,Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, NSW, Australia
| |
Collapse
|
8
|
Kaufmann T, Clement RP, Hiemstra B, Vos JJ, Scheeren TWL, Keus F, van der Horst ICC. Disagreement in cardiac output measurements between fourth-generation FloTrac and critical care ultrasonography in patients with circulatory shock: a prospective observational study. J Intensive Care 2019; 7:21. [PMID: 31011425 PMCID: PMC6460822 DOI: 10.1186/s40560-019-0373-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/14/2019] [Indexed: 02/01/2023] Open
Abstract
Background Cardiac output measurements may inform diagnosis and provide guidance of therapeutic interventions in patients with hemodynamic instability. The FloTrac™ algorithm uses uncalibrated arterial pressure waveform analysis to estimate cardiac output. Recently, a new version of the algorithm has been developed. The aim was to assess the agreement between FloTrac™ and routinely performed cardiac output measurements obtained by critical care ultrasonography in patients with circulatory shock. Methods A prospective observational study was performed in a tertiary hospital from June 2016 to January 2017. Adult critically ill patients with circulatory shock were eligible for inclusion. Cardiac output was measured simultaneously using FloTrac™ with a fourth-generation algorithm (COAP) and critical care ultrasonography (COCCUS). The strength of linear correlation of both methods was determined by the Pearson coefficient. Bland-Altman plot and four-quadrant plot were used to track agreement and trending ability. Result Eighty-nine paired cardiac output measurements were performed in 17 patients during their first 24 h of admittance. COAP and COCCUS had strong positive linear correlation (r2 = 0.60, p < 0.001). Bias of COAP and COCCUS was 0.2 L min−1 (95% CI − 0.2 to 0.6) with limits of agreement of − 3.6 L min−1 (95% CI − 4.3 to − 2.9) to 4.0 L min−1 (95% CI 3.3 to 4.7). The percentage error was 65.6% (95% CI 53.2 to 77.3). Concordance rate was 64.4%. Conclusions In critically ill patients with circulatory shock, there was disagreement and clinically unacceptable trending ability between values of cardiac output obtained by uncalibrated arterial pressure waveform analysis and critical care ultrasonography. Trial registration Clinicaltrials.gov, NCT02912624, registered on September 23, 2016 Electronic supplementary material The online version of this article (10.1186/s40560-019-0373-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Kaufmann
- 1Department of Anesthesiology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
| | - Ramon P Clement
- 1Department of Anesthesiology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
| | - Bart Hiemstra
- 1Department of Anesthesiology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands.,2Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jaap Jan Vos
- 1Department of Anesthesiology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
| | - Thomas W L Scheeren
- 1Department of Anesthesiology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
| | - Frederik Keus
- 2Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Iwan C C van der Horst
- 2Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | |
Collapse
|
9
|
Minimally invasive cardiac output technologies in the ICU: putting it all together. Curr Opin Crit Care 2018; 23:302-309. [PMID: 28538248 DOI: 10.1097/mcc.0000000000000417] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Haemodynamic monitoring is a cornerstone in the diagnosis and evaluation of treatment in critically ill patients in circulatory distress. The interest in using minimally invasive cardiac output monitors is growing. The purpose of this review is to discuss the currently available devices to provide an overview of their validation studies in order to answer the question whether these devices are ready for implementation in clinical practice. RECENT FINDINGS Current evidence shows that minimally invasive cardiac output monitoring devices are not yet interchangeable with (trans)pulmonary thermodilution in measuring cardiac output. However, validation studies are generally single centre, are based on small sample sizes in heterogeneous groups, and differ in the statistical methods used. SUMMARY Minimally and noninvasive monitoring devices may not be sufficiently accurate to replace (trans)pulmonary thermodilution in estimating cardiac output. The current paradigm shift to explore trending ability rather than investigating agreement of absolute values alone is to be applauded. Future research should focus on the effectiveness of these devices in the context of (functional) haemodynamic monitoring before adoption into clinical practice can be recommended.
Collapse
|
10
|
|
11
|
Prophylactic atropine administration attenuates the negative haemodynamic effects of induction of anaesthesia with propofol and high-dose remifentanil. Eur J Anaesthesiol 2017; 34:695-701. [DOI: 10.1097/eja.0000000000000639] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Saugel B, Bendjelid K, Critchley LA, Rex S, Scheeren TWL. Journal of Clinical Monitoring and Computing 2016 end of year summary: cardiovascular and hemodynamic monitoring. J Clin Monit Comput 2017; 31:5-17. [PMID: 28064413 DOI: 10.1007/s10877-017-9976-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 01/02/2017] [Indexed: 12/29/2022]
Abstract
The assessment and optimization of cardiovascular and hemodynamic variables is a mainstay of patient management in the care for critically ill patients in the intensive care unit (ICU) or the operating room (OR). It is, therefore, of outstanding importance to meticulously validate technologies for hemodynamic monitoring and to study their applicability in clinical practice and, finally, their impact on treatment decisions and on patient outcome. In this regard, the Journal of Clinical Monitoring and Computing (JCMC) is an ideal platform for publishing research in the field of cardiovascular and hemodynamic monitoring. In this review, we highlight papers published last year in the JCMC in order to summarize and discuss recent developments in this research area.
Collapse
Affiliation(s)
- Bernd Saugel
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Karim Bendjelid
- Department of Anesthesiology and Intensive Care, Geneva University Hospitals, Geneva, Switzerland
| | - Lester A Critchley
- Department of Anesthesia and Intensive Care, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Steffen Rex
- Department of Anesthesiology and Department of Cardiovascular Sciences, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Thomas W L Scheeren
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|