1
|
Arteaga GM, Crow S. End organ perfusion and pediatric microcirculation assessment. Front Pediatr 2023; 11:1123405. [PMID: 37842022 PMCID: PMC10576530 DOI: 10.3389/fped.2023.1123405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/05/2023] [Indexed: 10/17/2023] Open
Abstract
Cardiovascular instability and reduced oxygenation are regular perioperative critical events associated with anesthesia requiring intervention in neonates and young infants. This review article addresses the current modalities of assessing this population's adequate end-organ perfusion in the perioperative period. Assuring adequate tissue oxygenation in critically ill infants is based on parameters that measure acceptable macrocirculatory hemodynamic parameters such as vital signs (mean arterial blood pressure, heart rate, urinary output) and chemical parameters (lactic acidosis, mixed venous oxygen saturation, base deficit). Microcirculation assessment represents a promising candidate for assessing and improving hemodynamic management strategies in perioperative and critically ill populations. Evaluation of the functional state of the microcirculation can parallel improvement in tissue perfusion, a term coined as "hemodynamic coherence". Less information is available to assess microcirculatory disturbances related to higher mortality risk in critically ill adults and pediatric patients with septic shock. Techniques for measuring microcirculation have substantially improved in the past decade and have evolved from methods that are limited in scope, such as velocity-based laser Doppler and near-infrared spectroscopy, to handheld vital microscopy (HVM), also referred to as videomicroscopy. Available technologies to assess microcirculation include sublingual incident dark field (IDF) and sublingual sidestream dark field (SDF) devices. This chapter addresses (1) the physiological basis of microcirculation and its relevance to the neonatal and pediatric populations, (2) the pathophysiology associated with altered microcirculation and endothelium, and (3) the current literature reviewing modalities to detect and quantify the presence of microcirculatory alterations.
Collapse
Affiliation(s)
- Grace M. Arteaga
- Department of Pediatric and Adolescent Medicine, Pediatric Critical Care, Mayo Clinic, Rochester MN, United States
| | - Sheri Crow
- Department of Pediatric and Adolescent Medicine, Pediatric Critical Care, Mayo Clinic, Rochester MN, United States
| |
Collapse
|
2
|
Bogatu L, Turco S, Mischi M, Schmitt L, Woerlee P, Bezemer R, Bouwman AR, Korsten EHHM, Muehlsteff J. New Hemodynamic Parameters in Peri-Operative and Critical Care-Challenges in Translation. SENSORS (BASEL, SWITZERLAND) 2023; 23:2226. [PMID: 36850819 PMCID: PMC9961222 DOI: 10.3390/s23042226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Hemodynamic monitoring technologies are evolving continuously-a large number of bedside monitoring options are becoming available in the clinic. Methods such as echocardiography, electrical bioimpedance, and calibrated/uncalibrated analysis of pulse contours are becoming increasingly common. This is leading to a decline in the use of highly invasive monitoring and allowing for safer, more accurate, and continuous measurements. The new devices mainly aim to monitor the well-known hemodynamic variables (e.g., novel pulse contour, bioreactance methods are aimed at measuring widely-used variables such as blood pressure, cardiac output). Even though hemodynamic monitoring is now safer and more accurate, a number of issues remain due to the limited amount of information available for diagnosis and treatment. Extensive work is being carried out in order to allow for more hemodynamic parameters to be measured in the clinic. In this review, we identify and discuss the main sensing strategies aimed at obtaining a more complete picture of the hemodynamic status of a patient, namely: (i) measurement of the circulatory system response to a defined stimulus; (ii) measurement of the microcirculation; (iii) technologies for assessing dynamic vascular mechanisms; and (iv) machine learning methods. By analyzing these four main research strategies, we aim to convey the key aspects, challenges, and clinical value of measuring novel hemodynamic parameters in critical care.
Collapse
Affiliation(s)
- Laura Bogatu
- Biomedical Diagnostics Lab (BM/d), Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- Patient Care and Measurements, Philips Research, 5656 AE Eindhoven, The Netherlands
| | - Simona Turco
- Biomedical Diagnostics Lab (BM/d), Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Massimo Mischi
- Biomedical Diagnostics Lab (BM/d), Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Lars Schmitt
- Patient Care and Measurements, Philips Research, 5656 AE Eindhoven, The Netherlands
| | - Pierre Woerlee
- Biomedical Diagnostics Lab (BM/d), Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Rick Bezemer
- Patient Care and Measurements, Philips Research, 5656 AE Eindhoven, The Netherlands
| | - Arthur R. Bouwman
- Department of Anesthesiology, Intensive Care and Pain Medicine, Catharina Ziekenhuis, 5623 EJ Eindhoven, The Netherlands
| | - Erik H. H. M. Korsten
- Department of Anesthesiology, Intensive Care and Pain Medicine, Catharina Ziekenhuis, 5623 EJ Eindhoven, The Netherlands
| | - Jens Muehlsteff
- Patient Care and Measurements, Philips Research, 5656 AE Eindhoven, The Netherlands
| |
Collapse
|
3
|
Niezen CK, Vos JJ, Bos AF, Scheeren TWL. Microvascular effects of oxygen and carbon dioxide measured by vascular occlusion test in healthy volunteers. Microvasc Res 2023; 145:104437. [PMID: 36122646 DOI: 10.1016/j.mvr.2022.104437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Changes in near-infrared spectroscopy-derived regional tissue oxygen saturation (StO2) during a vascular occlusion test (VOT; ischemic provocation of microcirculation by rapid inflation and deflation of a tourniquet) allow estimating peripheral tissue O2 consumption (desaturation slope; DS), vascular reactivity (recovery slope; RS) and post-ischemic hyperperfusion (AUC-H). The effects of isolated alterations in the inspiratory fraction of O2 (FiO2) and changes in expiratory CO2 remain to be elucidated. Therefore, in this secondary analysis we determined the effects of standardized isolated instances of hypoxia, hyperoxia, hypocapnia and hypercapnia on the VOT-induced StO2 changes in healthy volunteers (n = 20) to establish reference values for future physiological studies. METHODS StO2 was measured on the thenar muscle. Multiple VOTs were performed in a standardized manner: i.e. at room air (baseline), during hyperoxia (FiO2 1.0), mild hypoxia (FiO2 ≈ 0.11), and after a second baseline, during hypocapnia (end-tidal CO2 (etCO2) 2.5-3.0 vol%) and hypercapnia (etCO2 7.0-7.5 vol%) at room air. Differences in DS, RS, and AUC-H were tested using repeated-measures ANOVA. RESULTS DS and RS remained constant during all applied conditions. AUC-H after hypoxia was smaller compared to hyperoxia (963 %*sec vs hyperoxia 1702 %*sec, P = 0.005), while there was no difference in AUC-H duration between hypoxia and baseline. The StO2 peak (after tourniquet deflation) during hypoxia was lower compared to baseline and hyperoxia (92 % vs 94 % and 98 %, P < 0.001). CONCLUSION We conclude that in healthy volunteers at rest, common situations observed during anesthesia and intensive care such as exposure to hypoxia, hyperoxia, hypocapnia, or hypercapnia, did not affect peripheral tissue O2 consumption and vascular reactivity as assessed by VOT-induced changes in StO2. These observations may serve as reference values for future physiological studies. TRIAL REGISTRATION This study represents a secondary analysis of an original study which has been registered at ClinicalTrials.gov nr: NCT02561052.
Collapse
Affiliation(s)
- Cornelia K Niezen
- University of Groningen, University Medical Center Groningen, Department of Anaesthesiology, Groningen, the Netherlands.
| | - Jaap J Vos
- University of Groningen, University Medical Center Groningen, Department of Anaesthesiology, Groningen, the Netherlands
| | - Arend F Bos
- University of Groningen, University Medical Center Groningen, Department of Neonatology, Beatrix Children's Hospital, Groningen, the Netherlands
| | - Thomas W L Scheeren
- University of Groningen, University Medical Center Groningen, Department of Anaesthesiology, Groningen, the Netherlands
| |
Collapse
|
4
|
Guo F, Jia S, Wang Q, Liu Q, Hu M, Wang W, Liu S, Li Q, Lu B, Zheng Y. Which Predictor, SctO2 or SstO2, Is more Sensitive for Postoperative Cognitive Dysfunction in Spine Surgery: A Prospective Observational Study? Orthop Surg 2022; 15:276-285. [PMID: 36394155 PMCID: PMC9837245 DOI: 10.1111/os.13580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Patients undergoing spinal surgery in the prone position may experience venous stasis, often resulting in edema in dependent areas of the body, including the head, and increased postoperative cognitive dysfunction (POCD). Not only does POCD present challenges for post-operative care and recovery, it can also cause permanent damage to the patient's brain and increase mortality and social costs. We aimed to clarify the incidence of POCD in patients with hypertension after prone spine surgery and to further determine the association between intraoperative somatic tissue oxygen saturation (SstO2)/cerebral tissue oxygen saturation (SctO2) and POCD. METHODS Patients with hypertension scheduled for open prone spine surgery from January 2020 to April 2021 were included in this single-center, prospective, observational study. SctO2 and SstO2 were monitored by near-infrared spectroscopy continuously throughout the surgery. The primary outcome was POCD assessed using the Mini-Mental Status Examination (MMSE). The association of SstO2 and SctO2 with POCD was evaluated with unadjusted analyses and multivariable logistic regression. RESULTS One hundred and one of 112 identified patients were included, 28 (27.8%) of whom developed POCD. None of the investigated SctO2 indices were predictive of POCD. However, the patients with POCD had greater decreases in intraoperative absolute SstO2 and relative SstO2 than the patients without POCD (P = 0.037, P = 0.036). Moreover, three SstO2 indices were associated with POCD, including a greater absolute SstO2 decrease (P = 0.021), a greater relative SstO2 decrease (P = 0.032), and a drop below 90% of the baseline SstO2 (P = 0.002), independent of ASA III status, preoperative platelets and postoperative sepsis. In addition, there was no correlation between intraoperative SctO2 and intraoperative SstO2 or between their respective absolute declines. CONCLUSION Twenty-eight (27.7%) of 101 patients developed POCD in patients with hypertension undergoing prone spine surgery, and intraoperative SstO2 is associated with POCD, whereas SctO2 shows no association with POCD. This study may initially provide a valuable new approach to the prevention of POCD in this population.
Collapse
Affiliation(s)
- Fei Guo
- Department of AnesthesiologyZigong Fourth People's Hospital Affiliated to Southwest Medical UniversityZigongChina
| | - Shuaiying Jia
- Department of AnesthesiologyZigong Fourth People's Hospital Affiliated to Southwest Medical UniversityZigongChina,Department of AnesthesiologyThe Affiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Qiyan Wang
- Department of AnesthesiologyZigong Fourth People's Hospital Affiliated to Southwest Medical UniversityZigongChina
| | - Qinyu Liu
- Translational Medicine Center, the Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Mingquan Hu
- Department of AnesthesiologyZigong Fourth People's Hospital Affiliated to Southwest Medical UniversityZigongChina
| | - Wenzhang Wang
- Department of AnesthesiologyZigong Fourth People's Hospital Affiliated to Southwest Medical UniversityZigongChina
| | - Shijian Liu
- Department of AnesthesiologyZigong Fourth People's Hospital Affiliated to Southwest Medical UniversityZigongChina
| | - Qiang Li
- Department of AnesthesiologyZigong Fourth People's Hospital Affiliated to Southwest Medical UniversityZigongChina
| | - Bin Lu
- Department of AnesthesiologyZigong Fourth People's Hospital Affiliated to Southwest Medical UniversityZigongChina
| | - Yeying Zheng
- Department of AnesthesiologyZigong Fourth People's Hospital Affiliated to Southwest Medical UniversityZigongChina
| |
Collapse
|
5
|
Bedside determination of microcirculatory oxygen delivery and uptake: a prospective observational clinical study for proof of principle. Sci Rep 2021; 11:24516. [PMID: 34972827 PMCID: PMC8720096 DOI: 10.1038/s41598-021-03922-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/06/2021] [Indexed: 11/09/2022] Open
Abstract
Assessment of microcirculatory functional capacity is considered to be of prime importance for therapy guidance and outcome prediction in critically ill intensive care patients. Here, we show determination of skin microcirculatory oxygen delivery and consumption rates to be a feasible approach at the patient’s bedside. Real time laser-doppler flowmetry (LDF) and white light spectrophotometry (WLS) were used for assessment of thenar skin microperfusion, regional Hb and postcapillary venous oxygen saturation before and after forearm ischemia. Adapted Fick’s principle equations allowed for calculation of microcirculatory oxygen delivery and uptake. Patient groups with expected different microcirculatory status were compared [control (n = 20), sepsis-1/2 definition criteria identified SIRS (n = 10) and septic shock patients (n = 20), and the latter group further classified according to sepsis-3 definition criteria in sepsis (n = 10) and septic shock (n = 10)], respectively. In otherwise healthy controls, microcirculatory oxygen delivery and uptake approximately doubled after ischemia with maximum values (mDO2max and mVO2max) significantly lower in SIRS or septic patient groups, respectively. Scatter plots of mVO2max and mDO2max values defined a region of unphysiological low values not observed in control but in critically ill patients with the percentage of dots within this region being highest in septic shock patients. LDF and WLS combined with vasoocclusive testing reveals significant differences in microcirculatory oxygen delivery and uptake capacity between control and critically ill patients. As a clinically feasible technique for bedside determination of microcirculatory oxygen delivery and uptake, LDF and WLS combined with vasoocclusive testing holds promise for monitoring of disease progression and/or guidance of therapy at the microcirculatory level to be tested in further clinical trials. ClinicalTrials.gov: NCT01530932.
Collapse
|
6
|
Hassan HW, Grasso V, Korostynska O, Khan H, Jose J, Mirtaheri P. An overview of assessment tools for determination of biological Magnesium implant degradation. Med Eng Phys 2021; 93:49-58. [PMID: 34154775 DOI: 10.1016/j.medengphy.2021.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 04/22/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022]
Abstract
Medical implants made of biodegradable materials are advantageous for short-term applications as fracture fixation and mechanical support during bone healing. After completing the healing process, the implant biodegrades without any long-term side effects nor any need for surgical removal. In particular, Magnesium (Mg) implants, while degrading, can cause physiological changes in the tissues surrounding the implant. The evaluation of structural remodeling is relevant, however, the functional assessment is crucial to provide information about physiological changes in tissues, which can be applied as an early marker during the healing process. Hence, non-invasive monitoring of structural and functional changes in the surrounding tissue during the healing process is essential, and the need for new assessing methods is emerging. This paper provides an assessment of Mg based implants, and an extensive review of the literature is presented with the focus on the imaging techniques for investigation of the Mg implants' biodegradation. The potential of a hybrid analysis, including Near-Infrared Spectroscopy (NIRS) and photoacoustic imaging (PAI) technology, is further discussed. A hybrid solution may play a significant role in monitoring implants and have several advantages for monitoring tissue oxygenation in addition to tissue's acidity, which is directly connected to the Mg implants degradation process. Such a hybrid assessment system can be a simple, ambulant, and less costly technology with the potential for clinically monitoring of Mg implants at site.
Collapse
Affiliation(s)
- Hafiz Wajahat Hassan
- Oslo Metropolitan University, Faculty of Technology, Art and Design, Department of Mechanical, Electronic and Chemical Engineering, Oslo, Norway
| | | | - Olga Korostynska
- Oslo Metropolitan University, Faculty of Technology, Art and Design, Department of Mechanical, Electronic and Chemical Engineering, Oslo, Norway
| | - Haroon Khan
- Oslo Metropolitan University, Faculty of Technology, Art and Design, Department of Mechanical, Electronic and Chemical Engineering, Oslo, Norway
| | - Jithin Jose
- FUJIFILM VisualSonics, Amsterdam, The Netherlands
| | - Peyman Mirtaheri
- Oslo Metropolitan University, Faculty of Technology, Art and Design, Department of Mechanical, Electronic and Chemical Engineering, Oslo, Norway.
| |
Collapse
|
7
|
Roy TK, Secomb TW. Effects of impaired microvascular flow regulation on metabolism-perfusion matching and organ function. Microcirculation 2020; 28:e12673. [PMID: 33236393 DOI: 10.1111/micc.12673] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
Impaired tissue oxygen delivery is a major cause of organ damage and failure in critically ill patients, which can occur even when systemic parameters, including cardiac output and arterial hemoglobin saturation, are close to normal. This review addresses oxygen transport mechanisms at the microcirculatory scale, and how hypoxia may occur in spite of adequate convective oxygen supply. The structure of the microcirculation is intrinsically heterogeneous, with wide variations in vessel diameters and flow pathway lengths, and consequently also in blood flow rates and oxygen levels. The dynamic processes of structural adaptation and flow regulation continually adjust microvessel diameters to compensate for heterogeneity, redistributing flow according to metabolic needs to ensure adequate tissue oxygenation. A key role in flow regulation is played by conducted responses, which are generated and propagated by endothelial cells and signal upstream arterioles to dilate in response to local hypoxia. Several pathophysiological conditions can impair local flow regulation, causing hypoxia and tissue damage leading to organ failure. Therapeutic measures targeted to systemic parameters may not address or may even worsen tissue oxygenation at the microvascular level. Restoration of tissue oxygenation in critically ill patients may depend on restoration of endothelial cell function, including conducted responses.
Collapse
Affiliation(s)
- Tuhin K Roy
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, AZ, 85724, USA
| |
Collapse
|
8
|
Altun D, Doğan A, Arnaz A, Yüksek A, Yalçinbaş YK, Türköz R, Sarioğlu T. Noninvasive monitoring of central venous oxygen saturation by jugular transcutaneous near-infrared spectroscopy in pediatric patients undergoing congenital cardiac surgery. Turk J Med Sci 2020; 50:1280-1287. [PMID: 32490634 PMCID: PMC7491293 DOI: 10.3906/sag-1911-135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/19/2020] [Indexed: 12/26/2022] Open
Abstract
Background and aim In patients undergoing congenital cardiac surgery, it is crucial to maintain oxygen demand-consumption balance. Central venous oxygen saturation (ScvO2) is a useful indicator of oxygen demand and consumption balance which is an invasive method. Near-infrared spectroscopy (NIRS) is a noninvasive, continuous monitoring technique that measures regional tissue oxygenation. NIRS that is placed over the internal jugular vein cutaneous area (NIRSijv) has the potential to show ScvO2 indirectly. In this study, we aimed to determine the correlation between ScvO2 with NIRSijv in pediatric patients undergoing congenital cardiac surgery. Materials and methods Fifty children participated in the study. Four patients were excluded for the inability of internal jugular vein (IJV) catheterization due to technical difficulties. After anesthesia induction, NIRS probes were placed on the IJV site with ultrasound guidance for the measurement of continuous transcutaneous oxygen saturation. The catheter insertion was also done through the IJV from the other side using ultrasound guidance. Cerebral oxygenation monitoring was done using NIRS with a single pediatric probe placed on the right forehead. Values of NIRSijv, cerebral NIRS (NIRSc) and ScvO2, were recorded at certain times until postoperative 24th hour. Results Data were collected at 8 different time points. There was a significant correlation between ScvO2 and NIRSijv in all measurement time points (r = 0.91), (P = 0.001). The mean bias between ScvO2 and NIRSijv was 2.92% and the limits of agreement were from 11% to –5.2%. There was a moderate correlation between ScvO2 and NIRSc (r = 0.45), (P = 0.001). The mean bias between ScvO2 and NIRSc was 2.7% and the limits of agreement were from +26% to –20%. Conclusion In this study, we found a strong correlation between ScvO2 and NIRS measurements taken from the internal jugular vein site. Accordingly, continuous noninvasive monitoring with transcutaneous NIRSijv can be an alternative method as a trend monitor for the central venous oxygen saturation in pediatric cardiac patients undergoing congenital cardiac surgery.
Collapse
Affiliation(s)
- Dilek Altun
- Department of Anesthesiology and Reanimation, Vocational School of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, İstanbul, Turkey
| | - Abdullah Doğan
- Department of Cardiovascular Surgery, Acıbadem Bakırköy Hospital, İstanbul, Turkey
| | - Ahmet Arnaz
- Department of Cardiovascular Surgery, Faculty of Medicine, Acıbadem Mehmet Ali Aydınlar University, İstanbul, Turkey
| | - Adnan Yüksek
- Department of Anesthesiology and Reanimation, Acıbadem Bakırköy Hospital, İstanbul, Turkey
| | | | - Riza Türköz
- Department of Cardiovascular Surgery, Acıbadem Bakırköy Hospital, İstanbul, Turkey
| | - Tayyar Sarioğlu
- Department of Pediatric Cardiovascular Surgery, Faculty of Medicine, Acıbadem Mehmet Ali Aydınlar University, İstanbul, Turkey
| |
Collapse
|
9
|
Sahinovic MM, Vos JJ, Scheeren TWL. Journal of Clinical Monitoring and Computing 2019 end of year summary: monitoring tissue oxygenation and perfusion and its autoregulation. J Clin Monit Comput 2020; 34:389-395. [PMID: 32277310 PMCID: PMC7205776 DOI: 10.1007/s10877-020-00504-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 12/30/2022]
Abstract
Tissue perfusion monitoring is increasingly being employed clinically in a non-invasive fashion. In this end-of-year summary of the Journal of Clinical Monitoring and Computing, we take a closer look at the papers published recently on this subject in the journal. Most of these papers focus on monitoring cerebral perfusion (and associated hemodynamics), using either transcranial doppler measurements or near-infrared spectroscopy. Given the importance of cerebral autoregulation in the analyses performed in most of the studies discussed here, this end-of-year summary also includes a short description of cerebral hemodynamic physiology and its autoregulation. Finally, we review articles on somatic tissue oxygenation and its possible association with outcome.
Collapse
Affiliation(s)
- M M Sahinovic
- Department of Anesthesiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700RB, Groningen, Netherlands
| | - J J Vos
- Department of Anesthesiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700RB, Groningen, Netherlands
| | - T W L Scheeren
- Department of Anesthesiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700RB, Groningen, Netherlands.
| |
Collapse
|
10
|
Near-infrared spectroscopy for assessing microcirculation during laparoscopic gynaecological surgery under combined spinal-general anaesthesia or general anaesthesia alone: a randomised controlled trial. J Clin Monit Comput 2019; 34:943-953. [DOI: 10.1007/s10877-019-00406-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/19/2019] [Indexed: 12/26/2022]
|