1
|
Xing Y, Thanasirungkul W, Aslam A, Niu F, Guo HR, Chi DF. Genes involved in the Type I pheromone biosynthesis pathway and chemoreception from the sex pheromone gland transcriptome of Dioryctria abietella. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100892. [PMID: 34428712 DOI: 10.1016/j.cbd.2021.100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 11/15/2022]
Abstract
Dioryctria abietella is a coniferous seed orchard pest that can damage a series of host plants and cause huge losses to the forest economy. Sex pheromones play an important role in lepidopteran sex communication for reproduction and can be used as biological control agents to monitor and trap pests. However, the genes involved in the biosynthesis, transportation, and degradation of D. abietella sex pheromones have not been studied extensively. Transcriptome analysis of female D. abietella sex pheromone glands (PGs) revealed that 210 candidate genes might be involved in sex pheromone biosynthesis (139 genes) and chemoreception systems (71 genes). The gene expression patterns exhibited four desaturase genes (DabiDES4-7) and one fatty acid reductase gene (DabiFAR6), which were more highly expressed in sex pheromone glands than in other tissues, suggesting that these enzymes play an important role in D. abietella sex pheromone synthesis. In addition, most DabiOBPs showed high expression in antennae, but only DabiOBP4 exhibited specific expression in sex pheromone glands, suggesting that they may play many physiological roles in D. abietella. We put forth a reasonable hypothesis about type I pheromone biosynthesis pathways based on these genes identified in the D. abietella sex pheromone gland transcriptome. Our findings lay a foundation for population monitoring, mating disruption, mass trapping, and the development of ecologically acceptable management strategies.
Collapse
Affiliation(s)
- Ya Xing
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Wariya Thanasirungkul
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Asad Aslam
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Fang Niu
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Hong-Ru Guo
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - De-Fu Chi
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China.
| |
Collapse
|
2
|
Liu J, He XZ, Zheng XL, Zhang Y, Wang Q. Pupal Cues Increase Sperm Production but Not Testis Size in an Insect. INSECTS 2021; 12:679. [PMID: 34442245 PMCID: PMC8396453 DOI: 10.3390/insects12080679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022]
Abstract
Theoretic and empirical studies show that social surroundings experienced by male insects during their larval or adult stage can influence their testicular investment in diverse ways. Although insect pupae do not feed and crawl, they can communicate using sex-specific and/or non-sex specific cues. Yet, it is unknown, in any insect, whether and how male pupae can fine-tune their resource allocation to sperm production and testis size in response to socio-sexual environments. We investigated this question using a moth, Ephestia kuehniella, which produces fertile eupyrene sperm and unfertile apyrene sperm. We held male pupae individually or in groups with different sex ratios, and dissected adults upon eclosion, measured their testis size, and counted both types of sperm. We demonstrated that after exposure to conspecific pupal cues regardless of sex, male pupae increased production of eupyrenes and apyrenes at the same rate but kept testis size unchanged. We suggest that testis size is fixed after pupation because most morphological traits are formed during the larval stage, allowing little room for pupae to adjust testis size. Like adults, male pupae with fully grown testes have sufficient resources to produce more sperm of both types according to the perceived increase in sperm competition risk.
Collapse
Affiliation(s)
- Junyan Liu
- School of Agriculture and Environment, Massey University, Palmerston North 4410, New Zealand; (J.L.); (X.Z.H.)
| | - Xiong Z. He
- School of Agriculture and Environment, Massey University, Palmerston North 4410, New Zealand; (J.L.); (X.Z.H.)
| | - Xia-Lin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Centre for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.-L.Z.); (Y.Z.)
| | - Yujing Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Centre for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (X.-L.Z.); (Y.Z.)
| | - Qiao Wang
- School of Agriculture and Environment, Massey University, Palmerston North 4410, New Zealand; (J.L.); (X.Z.H.)
| |
Collapse
|
3
|
Liu J, He XZ, Zheng XL, Zhang Y, Wang Q. Larval social cues influence testicular investment in an insect. Curr Zool 2021; 68:1-8. [PMID: 35169624 PMCID: PMC8836345 DOI: 10.1093/cz/zoab028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/14/2021] [Indexed: 12/11/2022] Open
Abstract
Socio-sexual environment can have critical impacts on reproduction and survival of animals. Consequently, they need to prepare themselves by allocating more resources to competitive traits that give them advantages in the particular social setting they have been perceiving. Evidence shows that a male usually raises his investment in sperm after he detects the current or future increase of sperm competition because relative sperm numbers can determine his paternity share. This leads to the wide use of testis size as an index of the sperm competition level, yet testis size does not always reflect sperm production. To date, it is not clear whether male animals fine-tune their resource allocation to sperm production and other traits as a response to social cues during their growth and development. Using a polygamous insect Ephestia kuehniella, we tested whether and how larval social environment affected sperm production, testis size, and body weight. We exposed the male larvae to different juvenile socio-sexual cues and measured these traits. We demonstrate that regardless of sex ratio, group-reared males produced more eupyrenes (fertile and nucleate sperm) but smaller testes than singly reared ones, and that body weight and apyrene (infertile and anucleate sperm) numbers remained the same across treatments. We conclude that the presence of larval social, but not sexual cues is responsible for the increase of eupyrene production and decrease of testis size. We suggest that male larvae increase investment in fertile sperm cells and reduce investment in other testicular tissues in the presence of conspecific juvenile cues.
Collapse
Affiliation(s)
- Junyan Liu
- School of Agriculture and Environment, Massey University, Palmerston North 4100, New Zealand
| | - Xiong Z He
- School of Agriculture and Environment, Massey University, Palmerston North 4100, New Zealand
| | - Xia-Lin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Centre for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yujing Zhang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, National Demonstration Centre for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Qiao Wang
- School of Agriculture and Environment, Massey University, Palmerston North 4100, New Zealand
| |
Collapse
|
4
|
Herrera H, Barros-Parada W, Bergmann J. Linoleic acid and stearic acid are biosynthetic precursors of (7Z,10Z)-7,10-hexadecadienal, the major component of the sex pheromone of Chilecomadia valdiviana (Lepidoptera: Cossidae). PLoS One 2019; 14:e0215769. [PMID: 31013309 PMCID: PMC6478319 DOI: 10.1371/journal.pone.0215769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/08/2019] [Indexed: 11/21/2022] Open
Abstract
The main pheromone compound of Chilecomadia valdiviana (Lepidoptera: Cossidae) has been recently identified as (7Z,10Z)-7,10-hexadecadienal. The biosynthesis of this pheromone compound showing attributes of both Type I and Type II lepidopteran pheromones was studied by the topical application of isotope-labeled fatty acids to the pheromone gland and subsequent analysis of the gland contents (pheromone compounds and fatty acyl compounds) by gas chromatography-mass spectrometry. The deuterium label of D11-linoleic acid was incorporated into the pheromone compound and its putative acyl precursor (7Z,10Z)-7,10-hexadecadienoate, demonstrating that the pheromone compound is biosynthesized from linoleic acid by chain-shortening and further functional group transformation. Furthermore, the deuterium label of D3-stearic acid was also incorporated into the pheromone compound, which indicates that the pheromone can be synthesized de novo by C. valdiviana, as is the case for Type I lepidopteran pheromone compounds.
Collapse
Affiliation(s)
- Heidy Herrera
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Núcleo de Química y Bioquímica, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile
| | - Wilson Barros-Parada
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Jan Bergmann
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- * E-mail:
| |
Collapse
|
5
|
Yew JY, Chung H. Insect pheromones: An overview of function, form, and discovery. Prog Lipid Res 2015; 59:88-105. [DOI: 10.1016/j.plipres.2015.06.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 05/01/2015] [Accepted: 06/12/2015] [Indexed: 12/17/2022]
|
6
|
Botvinko IV, Popova OV, Stroeva AR, Shuvalov SA, Vinokurov VA. Hydrocarbons and fatty acid methyl esters in bacterial biomass before and after physicochemical treatment. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714020039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Wang HL, Zhao CH, Szöcs G, Chinta SP, Schulz S, Löfstedt C. Biosynthesis and PBAN-regulated transport of pheromone polyenes in the winter moth, Operophtera brumata. J Chem Ecol 2013; 39:790-6. [PMID: 23665955 DOI: 10.1007/s10886-013-0292-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/11/2013] [Accepted: 04/03/2013] [Indexed: 10/26/2022]
Abstract
The trienoic and tetraenoic polyenes, (3Z,6Z,9Z)-3,6,9-nonadecatriene, (3Z,6Z,9Z)-3,6,9-henicosatriene, and (3Z,6Z,9Z)-1,3,6,9-henicosatetraene were found in the abdominal cuticle and pheromone gland of the winter moth Operophtera brumata L. (Lepidoptera: Geometridae), in addition to the previously identified single component sex pheromone (3Z,6Z,9Z)-1,3,6,9-nonadecatetraene. The pheromone biosynthesis activating neuropeptide (PBAN) is involved in the regulation of polyene transport from abdominal cuticle to the pheromone gland. In vivo deuterium labeling experiments showed that (11Z,14Z,17Z)-11,14,17-icosatrienoic acid, the malonate elongation product of linolenic acid, (9Z,12Z,15Z)-9,12,15-octadecatrienoic acid, is used to produce (3Z,6Z,9Z)-3,6,9-nonadecatriene and (3Z,6Z,9Z)-1,3,6,9-nonadecatetraene.
Collapse
Affiliation(s)
- Hong-Lei Wang
- Department of Biology, Lund University, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
8
|
Ding BJ, Liénard MA, Wang HL, Zhao CH, Löfstedt C. Terminal fatty-acyl-CoA desaturase involved in sex pheromone biosynthesis in the winter moth (Operophtera brumata). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:715-722. [PMID: 21651981 DOI: 10.1016/j.ibmb.2011.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/16/2011] [Accepted: 05/16/2011] [Indexed: 05/30/2023]
Abstract
The winter moth (Operophtera brumata L., Lepidoptera: Geometridae) utilizes a single hydrocarbon, 1,Z3,Z6,Z9-nonadecatetraene, as its sex pheromone. We tested the hypothesis that a fatty acid precursor, Z11,Z14,Z17,19-nonadecanoic acid, is biosynthesized from α-linolenic acid, through chain elongation by one 2-carbon unit, and subsequent methyl-terminus desaturation. Our results show that labeled α-linolenic acid is indeed incorporated into the pheromone component in vivo. A fatty-acyl-CoA desaturase gene that we found to be expressed in the abdominal epidermal tissue, the presumed site of biosynthesis for type II pheromones, was characterized and expressed heterologously in a yeast system. The transgenic yeast expressing this insect derived gene could convert Z11,Z14,Z17-eicosatrienoic acid into Z11,Z14,Z17,19-eicosatetraenoic acid. These results provide evidence that a terminal desaturation step is involved in the winter moth pheromone biosynthesis, prior to the decarboxylation.
Collapse
Affiliation(s)
- Bao-Jian Ding
- Functional Zoology, Department of Biology, Lund University, Sölvegatan 37, SE-22362 Lund, Sweden.
| | | | | | | | | |
Collapse
|
9
|
Wang HL, Zhao CH, Millar JG, Cardé RT, Löfstedt C. Biosynthesis of unusual moth pheromone components involves two different pathways in the navel orangeworm, Amyelois transitella. J Chem Ecol 2010; 36:535-47. [PMID: 20393784 PMCID: PMC2866370 DOI: 10.1007/s10886-010-9777-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Revised: 01/04/2010] [Accepted: 03/12/2010] [Indexed: 11/30/2022]
Abstract
The sex pheromone of the navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), consists of two different types of components, one type including (11Z,13Z)-11,13-hexadecadienal (11Z,13Z-16:Ald) with a terminal functional group containing oxygen, similar to the majority of moth pheromones reported, and another type including the unusual long-chain pentaenes, (3Z,6Z,9Z,12Z,15Z)-3,6,9,12,15-tricosapentaene (3Z,6Z,9Z,12Z,15Z-23:H) and (3Z,6Z,9Z,12Z,15Z)- 3,6,9,12,15-pentacosapentaene (3Z,6Z,9Z,12Z,15Z-25:H). After decapitation of females, the titer of 11Z,13Z-16:Ald in the pheromone gland decreased significantly, whereas the titer of the pentaenes remained unchanged. Injection of a pheromone biosynthesis activating peptide (PBAN) into the abdomens of decapitated females restored the titer of 11Z,13Z-16:Ald and even increased it above that in intact females, whereas the titer of the pentaenes in the pheromone gland was not affected by PBAN injection. In addition to common fatty acids, two likely precursors of 11Z,13Z-16:Ald, i.e., (Z)-11-hexadecenoic and (11Z,13Z)-11,13-hexadecadienoic acid, as well as traces of (Z)-6-hexadecenoic acid, were found in gland extracts. In addition, pheromone gland lipids contained (5Z,8Z,11Z,14Z,17Z)-5,8,11,14,17-icosapentaenoic acid, which also was found in extracts of the rest of the abdomen. Deuterium-labeled fatty acids, (16,16,16-D(3))-hexadecanoic acid and (Z)-[13,13,14,14,15,15,16,16,16-D(9)]-11-hexadecenoic acid, were incorporated into 11Z,13Z-16:Ald after topical application to the sex pheromone gland coupled with abdominal injection of PBAN. Deuterium label was incorporated into the C(23) and C(25) pentaenes after injection of (9Z,12Z,15Z)- [17,17,18,18,18-D(5)]-9,12,15-octadecatrienoic acid into 1-2 d old female pupae. These labeling results, in conjunction with the composition of fatty acid intermediates found in pheromone gland extracts, support different pathways leading to the two pheromone components. 11Z,13Z-16:Ald is probably produced in the pheromone gland by Delta11 desaturation of palmitic acid to 11Z-16:Acid followed by a second desaturation to form 11Z,13Z-16:Acid and subsequent reduction and oxidation. The production of 3Z,6Z,9Z,12Z,15Z-23:H and 3Z,6Z,9Z,12Z,15Z-25:H may take place outside the pheromone gland, and appears to start from linolenic acid, which is elongated and desaturated to form (5Z,8Z,11Z,14Z,17Z)-5,8,11,14,17-icosapentaenoic acid, followed by two or three further elongation steps and finally reductive decarboxylation.
Collapse
Key Words
- sex pheromone
- biosynthesis
- amyelois transitella
- linolenic acid
- (5z,8z,11z,14z,17z)-5,8,11,14,17-icosapentaenoic acid
- (3z, 6z, 9z, 12z, 15z)-3,6,9,12,15-tricosapentaene
- (11z,13z)-11,13-hexadecadienal
- bifunctional ∆11 desaturase
- pban
- pyralidae
Collapse
Affiliation(s)
- Hong-Lei Wang
- Department of Ecology, Lund University, 223 62 Lund, Sweden
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, The Chinese Academy of Sciences, Beijing, 100101 China
| | - Cheng-Hua Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, The Chinese Academy of Sciences, Beijing, 100101 China
| | - Jocelyn G. Millar
- Department of Entomology, University of California, Riverside, CA 92521 USA
| | - Ring T. Cardé
- Department of Entomology, University of California, Riverside, CA 92521 USA
| | | |
Collapse
|
10
|
Matsuoka K, Yamamoto M, Yamakawa R, Muramatsu M, Naka H, Kondo Y, Ando T. Identification of novel C(20) and C (22) trienoic acids from arctiid and geometrid female moths that produce polyenyl Type II Sex pheromone components. J Chem Ecol 2008; 34:1437-45. [PMID: 18839254 DOI: 10.1007/s10886-008-9530-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 07/14/2008] [Accepted: 07/30/2008] [Indexed: 10/21/2022]
Abstract
Gas chromatography-mass spectrometry (GC-MS) and GC-electroantennographic detection (EAD) analyses of the sex pheromone extract from a wasp moth, Syntomoides imaon (Lepidoptera: Arctiidae: Syntominae), showed that virgin females produced (Z,Z,Z)-3,6,9-henicosatriene and (Z,Z,Z)-1,3,6,9-henicosatetraene with a trace amount of their C(20) analogs. Identification of the chemical structures was facilitated by comparison with authentic standards and the double-bond positions were confirmed by dimethyl disulfide derivatization of monoenes produced by a diimide reduction. In a field test in the Yonaguni-jima Islands, males of the diurnal species were captured in traps baited with a 1:2 mixture of the above-described synthetic C(21) polyenes. Lipids were extracted from the abdominal integument and its associated oenocytes and peripheral fat bodies. Following derivatization, fatty acid methyl esters (FAMEs) were fractionated by HPLC equipped with an ODS column, and methyl (Z,Z,Z)-11,14,17-icosatrienoate and (Z,Z,Z)-13,16,19-docosatrienoate were identified by GC-MS. These novel C(20) and C(22) acid moieties are longer-chain analogs of linolenic acid, (Z,Z,Z)-9,12,15-octadecatrienoic acid. They are presumed to be biosynthetic precursors of the S. imaon pheromone because the C(21) trienyl component might be formed by decarboxylation of the C(22) acid. On the other hand, the C(20) acid, but not the C(22) acid, was found in FAMEs of Ascotis selenaria cretacea (Lepidoptera: Geometridae), which secretes C(19) pheromone components, (Z,Z,Z)-3,6,9-nonadecatriene and the monoepoxy derivative, indicating that different systems of the chain elongation might play an important role in developing species-specific communication systems mediated with polyunsaturated hydrocarbons and/or epoxy derivatives, components of Type II lepidopteran sex pheromones.
Collapse
Affiliation(s)
- Kanae Matsuoka
- Graduate School of Bio-Applications and Systems Engineering (BASE), Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | | | | | | | | | | | | |
Collapse
|