1
|
Mach BM, Long W, Daniels JC, Dale AG. Aphid infestations reduce monarch butterfly colonization, herbivory, and growth on ornamental milkweed. PLoS One 2023; 18:e0288407. [PMID: 37494406 PMCID: PMC10370756 DOI: 10.1371/journal.pone.0288407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Anthropogenic disturbance is driving global biodiversity loss, including the monarch butterfly (Danaus plexippus), a dietary specialist of milkweed. In response, ornamental milkweed plantings are increasingly common in urbanized landscapes, and recent evidence indicates they have conservation value for monarch butterflies. Unfortunately, sap-feeding insect herbivores, including the oleander aphid (Aphis nerii), frequently reach high densities on plants in nursery settings and urbanized landscapes. Aphid-infested milkweed may inhibit monarch conservation efforts by reducing host plant quality and inducing plant defenses. To test this, we evaluated the effects of oleander aphid infestation on monarch oviposition, larval performance, and plant traits using tropical milkweed (Asclepias curassavica), the most common commercially available milkweed species in the southern U.S. We quantified monarch oviposition preference, larval herbivory, larval weight, and plant characteristics on aphid-free and aphid-infested milkweed. Monarch butterflies deposited three times more eggs on aphid-free versus aphid-infested milkweed. Similarly, larvae fed aphid-free milkweed consumed and weighed twice as much as larvae fed aphid-infested milkweed. Aphid-free milkweed had higher total dry leaf biomass and nitrogen content than aphid-infested milkweed. Our results indicate that oleander aphid infestations can have indirect negative impacts on urban monarch conservation efforts and highlight the need for effective Lepidoptera-friendly integrated pest management tactics for ornamental plants.
Collapse
Affiliation(s)
- Bernadette M. Mach
- Entomology and Nematology Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States of America
| | - William Long
- Entomology and Nematology Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States of America
| | - Jaret C. Daniels
- Entomology and Nematology Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States of America
- Florida Museum of Natural History, Gainesville, FL, United States of America
| | - Adam G. Dale
- Entomology and Nematology Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
2
|
Climatic history, constraints, and the plasticity of phytochemical traits under water stress. Ecosphere 2022. [DOI: 10.1002/ecs2.4167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
3
|
Potts AS, Hunter MD. Unraveling the roles of genotype and environment in the expression of plant defense phenotypes. Ecol Evol 2021; 11:8542-8561. [PMID: 34257915 PMCID: PMC8258211 DOI: 10.1002/ece3.7639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/06/2021] [Indexed: 11/09/2022] Open
Abstract
Phenotypic variability results from interactions between genotype and environment and is a major driver of ecological and evolutionary interactions. Measuring the relative contributions of genetic variation, the environment, and their interaction to phenotypic variation remains a fundamental goal of evolutionary ecology.In this study, we assess the question: How do genetic variation and local environmental conditions interact to influence phenotype within a single population? We explored this question using seed from a single population of common milkweed, Asclepias syriaca, in northern Michigan. We first measured resistance and resistance traits of 14 maternal lines in two common garden experiments (field and greenhouse) to detect genetic variation within the population. We carried out a reciprocal transplant experiment with three of these maternal lines to assess effects of local environment on phenotype. Finally, we compared the phenotypic traits measured in our experiments with the phenotypic traits of the naturally growing maternal genets to be able to compare relative effect of genetic and environmental variation on naturally occurring phenotypic variation. We measured defoliation levels, arthropod abundances, foliar cardenolide concentrations, foliar latex exudation, foliar carbon and nitrogen concentrations, and plant growth.We found a striking lack of correlation in trait expression of the maternal lines between the common gardens, or between the common gardens and the naturally growing maternal genets, suggesting that environment plays a larger role in phenotypic trait variation of this population. We found evidence of significant genotype-by-environment interactions for all traits except foliar concentrations of nitrogen and cardenolide. Milkweed resistance to chewing herbivores was associated more strongly with the growing environment. We observed no variation in foliar cardenolide concentrations among maternal lines but did observe variation among maternal lines in foliar latex exudation.Overall, our data reveal powerful genotype-by-environment interactions on the expression of most resistance traits in milkweed.
Collapse
Affiliation(s)
- Abigail S. Potts
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMIUSA
| | - Mark D. Hunter
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
4
|
Mundim FM, Pringle EG. Phytochemistry-mediated disruption of ant-aphid interactions by root-feeding nematodes. Oecologia 2020; 194:441-454. [PMID: 33051776 DOI: 10.1007/s00442-020-04777-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 10/03/2020] [Indexed: 11/26/2022]
Abstract
Plants link interactions between aboveground and belowground organisms. Herbivore-induced changes in plant chemistry are hypothesized to impact entire food webs by changing the strength of trophic cascades. Yet, few studies have explored how belowground herbivores affect the behaviors of generalist predators, nor how such changes may act through diverse changes to the plant metabolome. Using a factorial experiment, we tested whether herbivory by root-knot nematodes (Meloidogyne incognita) affected the aboveground interaction among milkweed plants (Asclepias fascicularis or Asclepias speciosa), oleander aphids (Aphis nerii), and aphid-tending ants (Linepithema humile). We quantified the behaviors of aphid-tending ants, and we measured the effects of herbivore treatments on aphid densities and on phytochemistry. Unexpectedly, ants tended aphids primarily on the leaves of uninfected plants, whereas ants tended aphids primarily at the base of the stem of nematode-infected plants. In nematode-infected plants, aphids excreted more sugar per capita in their ant-attracting honeydew. Additionally, although plant chemistry was species-specific, nematode infection generally decreased the richness of plant secondary metabolites while acting as a protein sink in the roots. Path analysis indicated that the ants' behavioral change was driven in part by indirect effects of nematodes acting through changes in plant chemistry. We conclude that belowground herbivores can affect the behaviors of aboveground generalist ant predators by multiple paths, including changes in phytochemistry, which may affect the attractiveness of aphid honeydew rewards.
Collapse
Affiliation(s)
| | - Elizabeth G Pringle
- Department of Biology, University of Nevada, Reno, NV, USA.
- Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV, USA.
| |
Collapse
|
5
|
Bargar TA, Hladik ML, Daniels JC. Uptake and toxicity of clothianidin to monarch butterflies from milkweed consumption. PeerJ 2020; 8:e8669. [PMID: 32195048 PMCID: PMC7069410 DOI: 10.7717/peerj.8669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/30/2020] [Indexed: 11/20/2022] Open
Abstract
Recent concern for the adverse effects from neonicotinoid insecticides has centered on risk for insect pollinators in general and bees specifically. However, natural resource managers are also concerned about the risk of neonicotinoids to conservation efforts for the monarch butterfly (Danaus plexippus) and need additional data to help estimate risk for wild monarch butterflies exposed to those insecticides. In the present study, monarch butterfly larvae were exposed in the laboratory to clothianidin via contaminated milkweed plants from hatch until pupation, and the effects upon larval survival, larval growth, pupation success, and adult size were measured. Soils dosed with a granular insecticide product led to mean clothianidin concentrations of 10.8–2,193 ng/g in milkweed leaves and 5.8–58.0 ng/g in larvae. Treatment of soils also led to clothianidin concentrations of 2.6–5.1 ng/g in adult butterflies indicating potential for transfer of systemic insecticides from the soil through plants and larvae to adult butterflies. Estimated LC50s for total mortality (combined mortality of larvae and pupae) and EC50 for larval growth were variable but higher than the majority of concentrations reported in the literature for clothianidin contamination of leaves.
Collapse
Affiliation(s)
- Timothy A Bargar
- Wetland and Aquatic Research Center, U.S. Geological Survey, Gainesville, FL, USA
| | - Michelle L Hladik
- California Water Science Center, U.S. Geological Survey, Sacramento, CA, USA
| | - Jaret C Daniels
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA.,Florida Museum of Natural History, Gainesville, FL, USA
| |
Collapse
|
6
|
Freedman MG, Jason C, Ramírez SR, Strauss SY. Host plant adaptation during contemporary range expansion in the monarch butterfly. Evolution 2020; 74:377-391. [DOI: 10.1111/evo.13914] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/11/2019] [Accepted: 12/08/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Micah G. Freedman
- Center for Population Biology University of California, Davis Davis California 95616
- Department of Evolution and Ecology University of California, Davis Davis California
| | - Christopher Jason
- Department of Evolution and Ecology University of California, Davis Davis California
- School of Biological Sciences Washington State University Vancouver Washington 98686
| | - Santiago R. Ramírez
- Center for Population Biology University of California, Davis Davis California 95616
- Department of Evolution and Ecology University of California, Davis Davis California
| | - Sharon Y. Strauss
- Center for Population Biology University of California, Davis Davis California 95616
- Department of Evolution and Ecology University of California, Davis Davis California
| |
Collapse
|
7
|
Agrawal AA, Hastings AP. Trade-offs constrain the evolution of an inducible defense within but not between plant species. Ecology 2019; 100:e02857. [PMID: 31365759 DOI: 10.1002/ecy.2857] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/13/2019] [Accepted: 07/22/2019] [Indexed: 11/05/2022]
Abstract
Inducible defense is a common form of phenotypic plasticity, and inducibility (change in defense after herbivore attack) has long been predicted to trade off with constitutive (or baseline) defense to manage resource allocation. Although such trade-offs likely constrain evolution within species, the extent to which they influence divergence among species is unresolved. We studied cardenolide toxins among genetic families in eight North American Asclepias species, spanning the full range of defense in the genus. Using common environment experiments and chemical assays, we report a consistent trade-off (negative genetic correlation) between concentrations of constitutive cardenolides and their inducibility within each species. However, no trade-off was found in a phylogenetic analysis across species. To investigate factors driving differences in defense allocation among species we used latitude as a proxy for growing season and herbivore pressure and found that divergence into lower latitudes resulted in evolution of higher cardenolides overall. Next we used an enzymatic assay of the cellular target of cardenolides (sodium-potassium ATPase) and confirm that higher cardenolides resulted in stronger toxicity to a sensitive species, but not to specialized monarch butterflies. Thus, plant speciation into biogeographic regions with alternative resources or pest pressure resulted in the macroevolution of cardenolide defense, especially against unspecialized herbivores. Nonetheless, trade-offs persist in the extent to which this defense is allocated constitutively or is inducible among genotypes within each species.
Collapse
Affiliation(s)
- Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853, USA.,Department of Entomology, Cornell University, Ithaca, New York, 14853, USA
| | - Amy P Hastings
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
8
|
Mycorrhizae Alter Constitutive and Herbivore-Induced Volatile Emissions by Milkweeds. J Chem Ecol 2019; 45:610-625. [PMID: 31281942 DOI: 10.1007/s10886-019-01080-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/24/2019] [Accepted: 05/29/2019] [Indexed: 10/26/2022]
Abstract
Plants use volatile organic compounds (VOCs) to cue natural enemies to their herbivore prey on plants. Simultaneously, herbivores utilize volatile cues to identify appropriate hosts. Despite extensive efforts to understand sources of variation in plant communication by VOCs, we lack an understanding of how ubiquitous belowground mutualists, such as arbuscular mycorrhizal fungi (AMF), influence plant VOC emissions. In a full factorial experiment, we subjected plants of two milkweed (Asclepias) species under three levels of AMF availability to damage by aphids (Aphis nerii). We then measured plant headspace volatiles and chemical defenses (cardenolides) and compared these to VOCs emitted and cardenolides produced by plants without herbivores. We found that AMF have plant species-specific effects on constitutive and aphid-induced VOC emissions. High AMF availability increased emissions of total VOCs, two green leaf volatiles (3-hexenyl acetate and hexyl acetate), and methyl salicylate in A. curassavica, but did not affect emissions in A. incarnata. In contrast, aphids consistently increased emissions of 6-methyl-5-hepten-2-one and benzeneacetaldehyde in both species, independent of AMF availability. Both high AMF availability and aphids alone suppressed emissions of individual terpenes. However, aphid damage on plants under high AMF availability increased, or did not affect, emissions of those terpenes. Lastly, aphid feeding suppressed cardenolide concentrations only in A. curassavica, and AMF did not affect cardenolides in either plant species. Our findings suggest that by altering milkweed VOC profiles, AMF may affect both herbivore performance and natural enemy attraction.
Collapse
|
9
|
Meier AR, Hunter MD. Arbuscular mycorrhizal fungi mediate herbivore-induction of plant defenses differently above and belowground. OIKOS 2018. [DOI: 10.1111/oik.05402] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Amanda R. Meier
- Dept of Ecology and Evolutionary Biology, Univ. of Michigan; Ann Arbor MI 48109-1048 USA
| | - Mark D. Hunter
- Dept of Ecology and Evolutionary Biology, Univ. of Michigan; Ann Arbor MI 48109-1048 USA
| |
Collapse
|
10
|
Meier AR, Hunter MD. Mycorrhizae Alter Toxin Sequestration and Performance of Two Specialist Herbivores. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Faldyn MJ, Hunter MD, Elderd BD. Climate change and an invasive, tropical milkweed: an ecological trap for monarch butterflies. Ecology 2018; 99:1031-1038. [PMID: 29618170 DOI: 10.1002/ecy.2198] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/07/2018] [Accepted: 02/15/2018] [Indexed: 11/09/2022]
Abstract
While it is well established that climate change affects species distributions and abundances, the impacts of climate change on species interactions has not been extensively studied. This is particularly important for specialists whose interactions are tightly linked, such as between the monarch butterfly (Danaus plexippus) and the plant genus Asclepias, on which it depends. We used open-top chambers (OTCs) to increase temperatures in experimental plots and placed either nonnative Asclepias curassavica or native A. incarnata in each plot along with monarch larvae. We found, under current climatic conditions, adult monarchs had higher survival and mass when feeding on A. curassavica. However, under future conditions, monarchs fared much worse on A. curassavica. The decrease in adult survival and mass was associated with increasing cardenolide concentrations under warmer temperatures. Increased temperatures alone reduced monarch forewing length. Cardenolide concentrations in A. curassavica may have transitioned from beneficial to detrimental as temperature increased. Thus, the increasing cardenolide concentrations may have pushed the larvae over a tipping point into an ecological trap; whereby past environmental cues associated with increased fitness give misleading information. Given the ubiquity of specialist plant-herbivore interactions, the potential for such ecological traps to emerge as temperatures increase may have far-reaching consequences.
Collapse
Affiliation(s)
- Matthew J Faldyn
- Department of Biological Sciences, Louisiana State University, 202 Louisiana State University Life Sciences Building, Baton Rouge, Louisiana, 70803, USA
| | - Mark D Hunter
- Department of Ecology and Evolutionary Biology and School of Natural Resources and Environment, University of Michigan, 2053 Natural Sciences Building, 830 North University, Ann Arbor, Michigan, 48109-1048, USA
| | - Bret D Elderd
- Department of Biological Sciences, Louisiana State University, 202 Louisiana State University Life Sciences Building, Baton Rouge, Louisiana, 70803, USA
| |
Collapse
|
12
|
Tao L, Hoang KM, Hunter MD, de Roode JC. Fitness costs of animal medication: antiparasitic plant chemicals reduce fitness of monarch butterfly hosts. J Anim Ecol 2016; 85:1246-54. [PMID: 27286503 DOI: 10.1111/1365-2656.12558] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 05/25/2016] [Indexed: 12/01/2022]
Abstract
The emerging field of ecological immunology demonstrates that allocation by hosts to immune defence against parasites is constrained by the costs of those defences. However, the costs of non-immunological defences, which are important alternatives to canonical immune systems, are less well characterized. Estimating such costs is essential for our understanding of the ecology and evolution of alternative host defence strategies. Many animals have evolved medication behaviours, whereby they use antiparasitic compounds from their environment to protect themselves or their kin from parasitism. Documenting the costs of medication behaviours is complicated by natural variation in the medicinal components of diets and their covariance with other dietary components, such as macronutrients. In the current study, we explore the costs of the usage of antiparasitic compounds in monarch butterflies (Danaus plexippus), using natural variation in concentrations of antiparasitic compounds among plants. Upon infection by their specialist protozoan parasite Ophryocystis elektroscirrha, monarch butterflies can selectively oviposit on milkweed with high foliar concentrations of cardenolides, secondary chemicals that reduce parasite growth. Here, we show that these antiparasitic cardenolides can also impose significant costs on both uninfected and infected butterflies. Among eight milkweed species that vary substantially in their foliar cardenolide concentration and composition, we observed the opposing effects of cardenolides on monarch fitness traits. While high foliar cardenolide concentrations increased the tolerance of monarch butterflies to infection, they reduced the survival rate of caterpillars to adulthood. Additionally, although non-polar cardenolide compounds decreased the spore load of infected butterflies, they also reduced the life span of uninfected butterflies, resulting in a hump-shaped curve between cardenolide non-polarity and the life span of infected butterflies. Overall, our results suggest that the use of antiparasitic compounds carries substantial costs, which could constrain host investment in medication behaviours.
Collapse
Affiliation(s)
- Leiling Tao
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Kevin M Hoang
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Mark D Hunter
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 N University Avenue, Ann Arbor, MI, 48109, USA
| | - Jacobus C de Roode
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| |
Collapse
|
13
|
Secondary Defense Chemicals in Milkweed Reduce Parasite Infection in Monarch Butterflies, Danaus plexippus. J Chem Ecol 2015; 41:520-3. [DOI: 10.1007/s10886-015-0586-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/07/2015] [Accepted: 04/30/2015] [Indexed: 10/23/2022]
|
14
|
Sternberg ED, de Roode JC, Hunter MD. Trans-generational parasite protection associated with paternal diet. J Anim Ecol 2014; 84:310-21. [PMID: 25251734 DOI: 10.1111/1365-2656.12289] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 09/19/2014] [Indexed: 11/29/2022]
Abstract
Multiple generations of hosts are often exposed to the same pathogens, favouring the evolution of trans-generational defences. Because females have more opportunities to transfer protective molecules to offspring, many studies have focused on maternally derived protection. However, males of many species can transfer compounds along with sperm, including chemicals that could provide protection. Here, we assess maternally and paternally derived protection in a monarch butterfly-protozoan parasite system where parasite resistance is heavily influenced by secondary plant chemicals, known as cardenolides, present in the larval diet of milkweed plants. We reared monarch butterflies on medicinal and non-medicinal milkweed species and then measured resistance of their offspring to infection. We also measured cardenolide content in adult monarchs reared on the two species, and in the eggs that they produced. We found that offspring were more resistant to infection when their fathers were reared on medicinal milkweed, while maternal diet had less of an effect. We also found that eggs contained the highest levels of cardenolides when both parents were reared on the medicinal species. Moreover, females reared on non-medicinal milkweed produced eggs with significantly higher levels of cardenolides if they mated with males reared on the medicinal milkweed species. However, we found an equivocal relationship between the cardenolides present in eggs and parasite resistance in the offspring. Our results demonstrate that males reared on medicinal plants can transfer protection to their offspring, but the exact mechanism remains unresolved. This suggests that paternal protection from parasitism might be important, particularly when there are environmental sources of parasite resistance and when males transfer spermatophores during mating.
Collapse
Affiliation(s)
- Eleanore D Sternberg
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA.,Center for Infectious Disease Dynamics, Pennsylvania State University, 111 Merkle Building, University Park, PA, 16802, USA
| | - Jacobus C de Roode
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Mark D Hunter
- Department of Ecology and Evolutionary Biology, University of Michigan, 2053 Natural Sciences Building, 830 North University, Ann Arbor, MI, 48109-1048, USA
| |
Collapse
|
15
|
Agrawal AA, Hastings AP, Patrick ET, Knight AC. Specificity of herbivore-induced hormonal signaling and defensive traits in five closely related milkweeds (Asclepias spp.). J Chem Ecol 2014; 40:717-29. [PMID: 24863490 DOI: 10.1007/s10886-014-0449-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/23/2014] [Accepted: 05/06/2014] [Indexed: 12/11/2022]
Abstract
Despite the recognition that phytohormonal signaling mediates induced responses to herbivory, we still have little understanding of how such signaling varies among closely related species and may generate herbivore-specific induced responses. We studied closely related milkweeds (Asclepias) to link: 1) plant damage by two specialist chewing herbivores (milkweed leaf beetles Labidomera clivicolis and monarch caterpillars Danaus plexippus); 2) production of the phytohormones jasmonic acid (JA), salicylic acid (SA), and abscisic acid (ABA); 3) induction of defensive cardenolides and latex; and 4) impacts on Danaus caterpillars. We first show that A. syriaca exhibits induced resistance following monarch herbivory (i.e., reduced monarch growth on previously damaged plants), while the defensively dissimilar A. tuberosa does not. We next worked with a broader group of five Asclepias, including these two species, that are highly divergent in defensive traits yet from the same clade. Three of the five species showed herbivore-induced changes in cardenolides, while induced latex was found in four species. Among the phytohormones, JA and ABA showed specific responses (although they generally increased) to insect species and among the plant species. In contrast, SA responses were consistent among plant and herbivore species, showing a decline following herbivore attack. Jasmonic acid showed a positive quantitative relationship only with latex, and this was strongest in plants damaged by D. plexippus. Although phytohormones showed qualitative tradeoffs (i.e., treatments that enhanced JA reduced SA), the few significant individual plant-level correlations among hormones were positive, and these were strongest between JA and ABA in monarch damaged plants. We conclude that: 1) latex exudation is positively associated with endogenous JA levels, even among low-latex species; 2) correlations among milkweed hormones are generally positive, although herbivore damage induces a divergence (tradeoff) between JA and SA; 3) induction of cardenolides and latex are not necessarily physiologically linked; and 4) even very closely related species show highly divergent induction, with some species showing strong defenses, hormonally-mediated induction, and impacts on herbivores, while other milkweed species apparently use alternative strategies to cope with insect attack.
Collapse
Affiliation(s)
- Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, and Department of Entomology, Cornell University, Ithaca, NY, USA,
| | | | | | | |
Collapse
|
16
|
Ali JG, Agrawal AA. Asymmetry of plant-mediated interactions between specialist aphids and caterpillars on two milkweeds. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12271] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jared G. Ali
- Department of Entomology; Michigan State University; East Lansing Michigan 48824 USA
| | - Anurag A. Agrawal
- Department of Ecology & Evolutionary Biology; Cornell University; Ithaca New York 14853 USA
| |
Collapse
|
17
|
Intra-specific variation in wild Brassica oleracea for aphid-induced plant responses and consequences for caterpillar–parasitoid interactions. Oecologia 2013; 174:853-62. [DOI: 10.1007/s00442-013-2805-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/04/2013] [Indexed: 10/26/2022]
|
18
|
Wason EL, Hunter MD. Genetic variation in plant volatile emission does not result in differential attraction of natural enemies in the field. Oecologia 2013; 174:479-91. [DOI: 10.1007/s00442-013-2787-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 09/12/2013] [Indexed: 11/27/2022]
|
19
|
Vannette RL, Hunter MD, Rasmann S. Arbuscular mycorrhizal fungi alter above- and below-ground chemical defense expression differentially among Asclepias species. FRONTIERS IN PLANT SCIENCE 2013; 4:361. [PMID: 24065971 PMCID: PMC3776932 DOI: 10.3389/fpls.2013.00361] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/26/2013] [Indexed: 05/23/2023]
Abstract
Below-ground (BG) symbionts of plants can have substantial influence on plant growth and nutrition. Recent work demonstrates that mycorrhizal fungi can affect plant resistance to herbivory and the performance of above- (AG) and BG herbivores. Although these examples emerge from diverse systems, it is unclear if plant species that express similar defensive traits respond similarly to fungal colonization, but comparative work may inform this question. To examine the effects of arbuscular mycorrhizal fungi (AMF) on the expression of chemical resistance, we inoculated 8 species of Asclepias (milkweed)-which all produce toxic cardenolides-with a community of AMF. We quantified plant biomass, foliar and root cardenolide concentration and composition, and assessed evidence for a growth-defense tradeoff in the presence and absence of AMF. As expected, total foliar and root cardenolide concentration varied among milkweed species. Importantly, the effect of mycorrhizal fungi on total foliar cardenolide concentration also varied among milkweed species, with foliar cardenolides increasing or decreasing, depending on the plant species. We detected a phylogenetic signal to this variation; AMF fungi reduced foliar cardenolide concentrations to a greater extent in the clade including A. curassavica than in the clade including A. syriaca. Moreover, AMF inoculation shifted the composition of cardenolides in AG and BG plant tissues in a species-specific fashion. Mycorrhizal inoculation changed the relative distribution of cardenolides between root and shoot tissue in a species-specific fashion, but did not affect cardenolide diversity or polarity. Finally, a tradeoff between plant growth and defense in non-mycorrhizal plants was mitigated completely by AMF inoculation. Overall, we conclude that the effects of AMF inoculation on the expression of chemical resistance can vary among congeneric plant species, and ameliorate tradeoffs between growth and defense.
Collapse
Affiliation(s)
- Rachel L. Vannette
- Biology Department, Stanford UniversityStanford, CA, USA
- Department of Ecology and Evolutionary Biology, University of MichiganAnn Arbor, MI, USA
| | - Mark D. Hunter
- Department of Ecology and Evolutionary Biology, University of MichiganAnn Arbor, MI, USA
| | - Sergio Rasmann
- Department of Ecology and Evolutionary Biology, University of LausanneLausanne, Switzerland
| |
Collapse
|
20
|
Couture JJ, Serbin SP, Townsend PA. Spectroscopic sensitivity of real-time, rapidly induced phytochemical change in response to damage. THE NEW PHYTOLOGIST 2013; 198:311-319. [PMID: 23384059 DOI: 10.1111/nph.12159] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/26/2012] [Indexed: 06/01/2023]
Abstract
An ecological consequence of plant-herbivore interactions is the phytochemical induction of defenses in response to insect damage. Here, we used reflectance spectroscopy to characterize the foliar induction profile of cardenolides in Asclepias syriaca in response to damage, tracked in vivo changes and examined the influence of multiple plant traits on cardenolide concentrations. Foliar cardenolide concentrations were measured at specific time points following damage to capture their induction profile. Partial least-squares regression (PLSR) modeling was employed to calibrate cardenolide concentrations to reflectance spectroscopy. In addition, subsets of plants were either repeatedly sampled to track in vivo changes or modified to reduce latex flow to damaged areas. Cardenolide concentrations and the induction profile of A. syriaca were well predicted using models derived from reflectance spectroscopy, and this held true for repeatedly sampled plants. Correlations between cardenolides and other foliar-related variables were weak or not significant. Plant modification for latex reduction inhibited an induced cardenolide response. Our findings show that reflectance spectroscopy can characterize rapid phytochemical changes in vivo. We used reflectance spectroscopy to identify the mechanisms behind the production of plant secondary metabolites, simultaneously characterizing multiple foliar constituents. In this case, cardenolide induction appears to be largely driven by enhanced latex delivery to leaves following damage.
Collapse
Affiliation(s)
- John J Couture
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr, Madison, WI 53705, USA
| | - Shawn P Serbin
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr, Madison, WI 53705, USA
| | - Philip A Townsend
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr, Madison, WI 53705, USA
| |
Collapse
|
21
|
Vannette RL, Rasmann S. Arbuscular mycorrhizal fungi mediate below-ground plant-herbivore interactions: a phylogenetic study. Funct Ecol 2012. [DOI: 10.1111/j.1365-2435.2012.02046.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Rachel L. Vannette
- Biology Department; Stanford University; 371 Serra Mall; Stanford; CA; 94305; USA
| | - Sergio Rasmann
- Department of Ecology and Evolution; University of Lausanne; UNIL Sorge; Le Biophore; CH - 1015; Lausanne; Switzerland
| |
Collapse
|
22
|
Manson JS, Rasmann S, Halitschke R, Thomson JD, Agrawal AA. Cardenolides in nectar may be more than a consequence of allocation to other plant parts: a phylogenetic study ofAsclepias. Funct Ecol 2012. [DOI: 10.1111/j.1365-2435.2012.02039.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jessamyn S. Manson
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto; ON; M5S 3B2; Canada
| | - Sergio Rasmann
- Department of Ecology and Evolution; University of Lausanne; Lausanne; CH - 1015; Switzerland
| | - Rayko Halitschke
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca; NY; 14853; USA
| | - James D. Thomson
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto; ON; M5S 3B2; Canada
| | - Anurag A. Agrawal
- Department of Ecology and Evolutionary Biology; Cornell University; Ithaca; NY; 14853; USA
| |
Collapse
|
23
|
Sternberg ED, Lefèvre T, Li J, de Castillejo CLF, Li H, Hunter MD, de Roode JC. Food plant derived disease tolerance and resistance in a natural butterfly-plant-parasite interactions. Evolution 2012; 66:3367-76. [PMID: 23106703 DOI: 10.1111/j.1558-5646.2012.01693.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organisms can protect themselves against parasite-induced fitness costs through resistance or tolerance. Resistance includes mechanisms that prevent infection or limit parasite growth while tolerance alleviates the fitness costs from parasitism without limiting infection. Although tolerance and resistance affect host-parasite coevolution in fundamentally different ways, tolerance has often been ignored in animal-parasite systems. Where it has been studied, tolerance has been assumed to be a genetic mechanism, unaffected by the host environment. Here we studied the effects of host ecology on tolerance and resistance to infection by rearing monarch butterflies on 12 different species of milkweed food plants and infecting them with a naturally occurring protozoan parasite. Our results show that monarch butterflies experience different levels of tolerance to parasitism depending on the species of milkweed that they feed on, with some species providing over twofold greater tolerance than other milkweed species. Resistance was also affected by milkweed species, but there was no relationship between milkweed-conferred resistance and tolerance. Chemical analysis suggests that infected monarchs obtain highest fitness when reared on milkweeds with an intermediate concentration, diversity, and polarity of toxic secondary plant chemicals known as cardenolides. Our results demonstrate that environmental factors-such as interacting species in ecological food webs-are important drivers of disease tolerance.
Collapse
Affiliation(s)
- Eleanore D Sternberg
- Department of Biology, Emory University, 1510 Clifton Rd, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Agrawal AA, Petschenka G, Bingham RA, Weber MG, Rasmann S. Toxic cardenolides: chemical ecology and coevolution of specialized plant-herbivore interactions. THE NEW PHYTOLOGIST 2012; 194:28-45. [PMID: 22292897 DOI: 10.1111/j.1469-8137.2011.04049.x] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cardenolides are remarkable steroidal toxins that have become model systems, critical in the development of theories for chemical ecology and coevolution. Because cardenolides inhibit the ubiquitous and essential animal enzyme Na⁺/K⁺-ATPase, most insects that feed on cardenolide-containing plants are highly specialized. With a huge diversity of chemical forms, these secondary metabolites are sporadically distributed across 12 botanical families, but dominate the Apocynaceae where they are found in > 30 genera. Studies over the past decade have demonstrated patterns in the distribution of cardenolides among plant organs, including all tissue types, and across broad geographic gradients within and across species. Cardenolide production has a genetic basis and is subject to natural selection by herbivores. In addition, there is strong evidence for phenotypic plasticity, with the biotic and abiotic environment predictably impacting cardenolide production. Mounting evidence indicates a high degree of specificity in herbivore-induced cardenolides in Asclepias. While herbivores of cardenolide-containing plants often sequester the toxins, are aposematic, and possess several physiological adaptations (including target site insensitivity), there is strong evidence that these specialists are nonetheless negatively impacted by cardenolides. While reviewing both the mechanisms and evolutionary ecology of cardenolide-mediated interactions, we advance novel hypotheses and suggest directions for future work.
Collapse
Affiliation(s)
- Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, and Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Georg Petschenka
- Biozentrum Grindel, Molekulare Evolutionsbiologie, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| | - Robin A Bingham
- Department of Natural and Environmental Sciences, Western State College of Colorado, Gunnison, CO 81231, USA
| | - Marjorie G Weber
- Department of Ecology and Evolutionary Biology, and Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Sergio Rasmann
- Department of Ecology and Evolution, Bâtiment Biophore, University of Lausanne, CH - 1015 Lausanne, Switzerland
| |
Collapse
|
25
|
de Roode JC, Rarick RM, Mongue AJ, Gerardo NM, Hunter MD. Aphids indirectly increase virulence and transmission potential of a monarch butterfly parasite by reducing defensive chemistry of a shared food plant. Ecol Lett 2011; 14:453-61. [PMID: 21375682 DOI: 10.1111/j.1461-0248.2011.01604.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Parasites and hosts live in communities consisting of many interacting species, but few studies have examined how communities affect parasite virulence and transmission. We studied a food web consisting of two species of milkweed, two milkweed herbivores (monarch butterfly and oleander aphid) and a monarch butterfly-specific parasite. We found that the presence of aphids increased the virulence and transmission potential of the monarch butterfly's parasite on one milkweed species. These increases were associated with aphid-induced decreases in the defensive chemicals of milkweed plants. Our experiment suggests that aphids can indirectly increase the virulence and transmission potential of monarch butterfly parasites, probably by altering the chemical composition of a shared food plant. These results indicate that species that are far removed from host-parasite interactions can alter such interactions through cascading indirect effects in the food web. As such, indirect effects within ecological communities may drive the dynamics and evolution of parasites.
Collapse
Affiliation(s)
- Jacobus C de Roode
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
26
|
Staudt M, Jackson B, El-Aouni H, Buatois B, Lacroze JP, Poëssel JL, Sauge MH. Volatile organic compound emissions induced by the aphid Myzus persicae differ among resistant and susceptible peach cultivars and a wild relative. TREE PHYSIOLOGY 2010; 30:1320-1334. [PMID: 20739428 DOI: 10.1093/treephys/tpq072] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Little is known on aphid-induced emissions of volatile organic compounds (VOCs) from trees and particularly on their intraspecific variability in association with resistance traits. We compared VOC emissions from five peach cultivars (Prunus persica (L.) Batsch) and a wild relative (Prunus davidiana (Carrière) Franch) that differ in their level (susceptible/resistant) and type (antixenosis, antibiosis) of resistance to the green peach aphid, Myzus persicae (Sulzer). Additionally, the kinetics of VOC induction in response to aphids was compared with that by mechanical wounding. Qualitative and overall quantitative differences among peach genotypes were found in VOC emissions that were mainly composed of methyl-salicylate, farnesenes, (E)-β-ocimene and (E)-4,8-dimethyl-1,3,7-nonatriene. Irrespective of the type of resistance, all resistant genotypes had increased VOC emissions upon aphid attack, while in susceptible genotypes emissions remained low. Emission increases were highest in the genotypes that express increased aphid resistance during second infestations, which had also the highest proportions of methyl-salicylate in their emissions. VOC induction by aphids proceeded slowly with a delay of several hours. Artificial wounding of leaves did not result in emissions of aphid-induced VOCs but caused an immediate burst of green leaf volatiles and benzaldehyde. We conclude that VOC induction in resistant peach cultivars is part of a general defence syndrome that is being avoided or suppressed by M. persicae in the susceptible genotypes. The induction likely involves an aphid-specific elicitor and (methyl)-salicylate in the subsequent signalling and regulation processes that should include gene activation due to the marked delay in the emission response. The results are compared with those of the literature and discussed in view of their ecological and environmental significance.
Collapse
Affiliation(s)
- Micheal Staudt
- CEFE-CNRS, 1919, Route de Mende, 34293 Montpellier Cedex 5, France.
| | | | | | | | | | | | | |
Collapse
|