1
|
Zhou Y, Huang C, Fu G, Tang R, Yang N, Liu W, Qian W, Wan F. Molecular and Functional Characterization of Three General Odorant-Binding Protein 2 Genes in Cydia pomonella (Lepidoptera: Tortricidae). Int J Mol Sci 2024; 25:1746. [PMID: 38339028 PMCID: PMC10855334 DOI: 10.3390/ijms25031746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
General odorant-binding proteins (GOBPs) play a crucial role in the detection of host plant volatiles and pheromones by lepidopterans. Previous studies identified two duplications in the GOBP2 gene in Cydia pomonella. In this study, we employed qRT-PCR, protein purification, and fluorescence competitive binding assays to investigate the functions of three GOBP2 genes in C. pomonella. Our findings reveal that CpomGOBP2a and CpomGOBP2b are specifically highly expressed in antennae, while CpomGOBP2c exhibits high specific expression in wings, suggesting a potential divergence in their functions. Recombinant proteins of CpomGOBP2a, CpomGOBP2b, and CpomGOBP2c were successfully expressed and purified, enabling an in-depth exploration of their functions. Competitive binding assays with 20 host plant volatiles and the sex pheromone (codlemone) demonstrated that CpomGOBP2a exhibits strong binding to four compounds, namely butyl octanoate, ethyl (2E,4Z)-deca-2,4-dienoate (pear ester), codlemone, and geranylacetone, with corresponding dissolution constants (Ki) of 8.59993 μM, 9.14704 μM, 22.66298 μM, and 22.86923 μM, respectively. CpomGOBP2b showed specific binding to pear ester (Ki = 17.37481 μM), while CpomGOBP2c did not exhibit binding to any tested compounds. In conclusion, our results indicate a functional divergence among CpomGOBP2a, CpomGOBP2b, and CpomGOBP2c. These findings contribute valuable insights for the development of novel prevention and control technologies and enhance our understanding of the evolutionary mechanisms of olfactory genes in C. pomonella.
Collapse
Affiliation(s)
- Yanan Zhou
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Cong Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guanjun Fu
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Rui Tang
- Centre for Resource Insects and Biotechnology, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510220, China
| | - Nianwan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wanqiang Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Fanghao Wan
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Tan SQ, Wei HS, Li Z, Liu XX. The Odorant-Binding Protein 1 Mediates the Foraging Behavior of Grapholita molesta Larvae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:116-127. [PMID: 38109355 DOI: 10.1021/acs.jafc.3c05075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Since eggs are laid directly on fruit skin, it is typically believed that food odor has little impact on the foraging of Grapholita molesta larvae. It is crucial to note that larvae that hatch on twigs and leaves could need some sort of identification system when foraging. Here, 22 GmolOBP genes were identified from the G. molesta larval transcriptome via the comparison of conserved domain and homology in the protein level. GmolOBP1 had strong affinities for important pear-fruit volatiles, which caused larvae strong behavioral responses. However, after GmolOBP1 silencing, the larvae lost their attraction to methyl salicylate, α-farnesene, butyl acetate, ethyl butanoate, and ethyl hexanoate, and the effects of larvae seeking various pears were significantly reduced. Consequently, GmolOBP1 was required for the reception of pear volatiles and was involved in mediating how G. molesta larvae foraged. Our research revealed the GmolOBP1 foraging signal recognition mechanism as well as potential molecular targets for field pest management.
Collapse
Affiliation(s)
- Shu-Qian Tan
- Department of Entomology and Key Lab of Integrated Pest Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Hong-Shuang Wei
- Department of Entomology and Key Lab of Integrated Pest Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Medicinal Plant Development, Beijing 100193, China
| | - Zhen Li
- Department of Entomology and Key Lab of Integrated Pest Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xiao-Xia Liu
- Department of Entomology and Key Lab of Integrated Pest Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Liu Y, Yu J, Zhu F, Shen Z, Jiang H, Li Z, Liu X, Xu H. Function of Cytochrome P450s and Gut Microbiome in Biopesticide Adaptation of Grapholita molesta on Different Host Diets. Int J Mol Sci 2023; 24:15435. [PMID: 37895115 PMCID: PMC10607806 DOI: 10.3390/ijms242015435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Insects that feed on various host plants possess diverse xenobiotic adaptations; however, the underlying mechanisms are poorly understood. In the present study, we used Grapholita molesta, which shifts feeding sites from peach shoots to apple fruits, as a model to explore the effects of shifts in host plant diet on the profiles of cytochrome P450s and the gut bacteria microbiome, as well as their effects on biopesticide adaptation. We found that the sensitivity of the fruit-feeding G. molesta to emamectin benzoate biopesticide was significantly lower than that of the shoot-feeding larvae. We also found that the P450 enzyme activity and the expression of nine cytochrome P450s were enhanced in G. molesta fed on Fuji apples compared to those fed on peach shoots. The survival rates of G. molesta exposed to emamectin benzoate significantly decreased as each of three of four emamectin benzoate-inducted cytochrome P450 genes were silenced. Furthermore, we discovered the gut bacteria dynamics of G. molesta changed with the host shift and the structure of the gut bacteria microbiome was determined by the final diet ingested; additionally, the dysbiosis of the gut microbiota induced by antibiotics could significantly increase the sensitivity to emamectin benzoate. Taken together, our results suggest that the expression of P450s and the composition of the gut bacteria microbiome promote adaptation to emamectin benzoate in G. molesta, providing new insights into the molecular mechanisms underlying xenobiotic adaptation in this notorious pest.
Collapse
Affiliation(s)
- Yanjun Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Y.L.)
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China (Z.L.)
| | - Jianmei Yu
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China (Z.L.)
- Institute of Vegetables, Zibo Academy of Agricultural Sciences, Zibo 255000, China
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Zhongjian Shen
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - He Jiang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Y.L.)
| | - Zhen Li
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China (Z.L.)
| | - Xiaoxia Liu
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China (Z.L.)
| | - Huanli Xu
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China (Z.L.)
| |
Collapse
|
4
|
Li J, Jia Y, Zhang D, Li Z, Zhang S, Liu X. Molecular identification of carboxylesterase genes and their potential roles in the insecticides susceptibility of Grapholita molesta. INSECT MOLECULAR BIOLOGY 2023; 32:305-315. [PMID: 36661850 DOI: 10.1111/imb.12831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/16/2023] [Indexed: 05/15/2023]
Abstract
Grapholita molesta is one of the most damaging pests worldwide in stone and pome fruits. Application of chemical pesticides is still the main method to control this pest, which results in resistance to several types of insecticides. Carboxylesterase (CarE) is one of the important enzymes involved in the detoxification metabolism and tolerance of xenobiotics and insecticides. However, the roles of CarEs in insecticides susceptibility of G. molesta are still unclear. In the present study, the enzyme activity of CarEs and the mRNA expression of six CarE genes were consistently elevated after treatment with three insecticides (emamectin benzoate, lambda-cyhalothrin, and chlorantraniliprole). According to spatio-temporal expression profiles, six CarE genes expressed differently in different developmental stages, and highly expressed in some detoxification metabolic organs. RNAi-mediated knockdown of these six CarE genes indicated that the susceptibility of G. molesta to all these three insecticides were obviously raised after GmCarE9, GmCarE14, GmCarE16, and GmCarE22 knockdown, respectively. Overall, these results demonstrated that GmCarE9, GmCarE14, GmCarE16, and GmCarE22 play a role in the susceptibility of G. molesta to emamectin benzoate, lambda-cyhalothrin, and chlorantraniliprole treatment. This study expands our understanding of CarEs in insects, that the same CarE gene could participate in the susceptibility to different insecticides.
Collapse
Affiliation(s)
- Jianying Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Yujie Jia
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Dongyue Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Songdou Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
5
|
Li J, Yin J, Yan J, Zhang M, Chen R, Li S, Palli SR, Gao Y. Expression and functional analysis of an odorant binding protein PopeOBP16 from Phthorimaea operculella (Zeller). Int J Biol Macromol 2023; 242:124939. [PMID: 37207749 DOI: 10.1016/j.ijbiomac.2023.124939] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Odorant binding proteins (OBPs) are essential proteins in the peripheral olfactory system, responsible for odorant recognition and transport to olfactory receptors. Phthorimaea operculella (potato tuber moth) is an important oligophagous pest on Solanaceae crops in many countries and regions. PopeOBP16 is one of the OBPs in potato tuber moth. This study examined the expression profiles of PopeOBP16. The results of qPCR indicated that PopeOBP16 was highly expressed in the antennae of adults, especially in males, suggesting that it may be involved in odor recognition in adults. The electroantennogram (EAG) was used to screen candidate compounds with the antennae of P. operculella. The relative affinities of PopeOBP16 to 27 host volatiles and two sex pheromone components with the highest relative EAG responses were examined with competitive fluorescence-based binding assays. PopeOBP16 had the strongest binding affinity with the plant volatiles: nerol, 2-phenylethanol, linalool, 1,8-cineole, benzaldehyde, β-pinene, d-limonene, terpinolene, α-terpinene, and the sex pheromone component trans-4, cis-7, cis-10-tridecatrien-1-ol acetate. The results provide a foundation for further research into the functioning of the olfactory system and the potential development of green chemistry for control of the potato tuber moth.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jiao Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Junjie Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Mengdi Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Ruipeng Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Suhua Li
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.
| | - Subba Reddy Palli
- Department of Entomology, University of Kentucky, Lexington, KY, USA.
| | - Yulin Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
6
|
Zhang X, Purba ER, Sun J, Zhang QH, Dong SL, Zhang YN, He P, Mang D, Zhang L. Functional differentiation of two general-odorant binding proteins in Hyphantria cunea (Drury) (Lepidoptera: Erebidae). PEST MANAGEMENT SCIENCE 2023. [PMID: 37103977 DOI: 10.1002/ps.7515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/21/2023] [Accepted: 04/27/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND General odor-binding proteins (GOBPs) play critical roles in insect olfactory recognition of sex pheromones and plant volatiles. Therefore, the identification of GOBPs in Hyphantria cunea (Drury) based on their characterization to pheromone components and plant volatiles is remain unknown. RESULTS In this study, two H. cunea (HcunGOBPs) genes were cloned, and their expression profiles and odorant binding characteristics were systematically analyzed. Firstly, the tissue expression study showed that both HcunGOBP1 and HcunGOBP2 were highly expressed in the antennae of both sexes, indicating their potential involvement in the perception of sex pheromones. Secondly, these two HcunGOBPs genes were expressed in Escherichia coli and ligand binding assays were used to assess the binding affinities to its sex pheromone components including two aldehydes and two epoxides, and some plant volatiles. HcunGOBP2 showed high binding affinities to two aldehyde components (Z9, Z12, Z15-18Ald and Z9, Z12-18Ald), and showed low binding affinities to two epoxide components (1, Z3, Z6-9S, 10R-epoxy-21Hy and Z3, Z6-9S, 10R-epoxy-21Hy), whereas HcunGOBP1 showed weak but significant binding to all four sex pheromone components. Furthermore, both HcunGOBPs demonstrated variable binding affinities to the plant volatiles tested. Thirdly, in silico studies of HcunGOBPs utilized homology, structure modeling, and molecular docking revealed critical hydrophobic residues might be involved in the binding of HcunGOBPs to their sex pheromone components and plant volatiles. CONCLUSION Our study suggests that these two HcunGOBPs may serve as potential targets for future studies of HcunGOBPs ligand binding, providing insight in the mechanism of olfaction in H. cunea. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- Anhui Provincial Key Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
- Education Ministry, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Endang R Purba
- Structural Cellular Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jing Sun
- College of Life Science, Hebei University, Baoding, China
| | | | - Shuang-Lin Dong
- Education Ministry, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Dingze Mang
- College of Life Science, Hebei University, Baoding, China
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Longwa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
7
|
Li LL, Xu BQ, Li CQ, Li BL, Chen XL, Li GW. Different Binding Affinities of Three General Odorant-Binding Proteins in Grapholita funebrana (Treitscheke) (Lepidoptera: Tortricidae) to Sex Pheromones, Host Plant Volatiles, and Insecticides. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1129-1145. [PMID: 35604383 DOI: 10.1093/jee/toac063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Indexed: 06/15/2023]
Abstract
Insect general odorant-binding proteins (GOBPs) play irreplaceable roles in filtering, binding, and transporting host odorants to olfactory receptors. Grapholita funebrana (Treitscheke) (Lepidoptera: Tortricidae), an economically important pest of fruit crops, uses fruit volatiles as cues to locate host plants. However, the functions of GOBPs in G. funebrana are still unknown. Three GOBP genes, namely, GfunGOBP1, GfunGOBP2, and GfunGOBP3, were cloned, and their expression profiles in different tissues were detected by the method of real-time quantitative PCR (RT-qPCR). The binding properties of recombinant GfunGOBPs (rGfunGOBPs) to various ligands were investigated via fluorescence binding assays. The three GfunGOBPs were mainly expressed in the antennae of both male and female moths. All these three rGfunGOBPs could bind to sex pheromones, while having varying affinities toward these pheromones. The three rGfunGOBPs also displayed a wide range of ligand-binding spectrums with tested host odorants. The rGfunGOBP1, rGfunGOBP2, and rGfunGOBP3 bound to 34, 33, and 30 out of the 41 tested odorants, respectively. Three rGfunGOBPs had overlapping binding activities to β-myrcene, (-)-α-phellandrene, and ethyl isovalerate with the Ki less than 3.0 μM. The rGfunGOBP1 and rGfunGOBP3 could selectively bind to several insecticides, whereas rGfunGOBP2 could not. Three rGfunGOBPs had the dual functions of selectively binding to sex pheromones and host odorants. Moreover, the rGfunGOBP1 and rGfunGOBP3 can also serve as 'signal proteins' and bind to different insecticides. This study contributed to elucidating the potential molecular mechanism of the olfaction for G. funebrana, and thereby promotes the development of effective botanical attractants or pheromone synergists to control G. funebrana.
Collapse
Affiliation(s)
- Lin-Lin Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, Shaanxi, P. R. China
| | - Bing-Qiang Xu
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumchi, Xinjiang, P. R. China
| | - Chun-Qin Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, Shaanxi, P. R. China
| | - Bo-Liao Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, Shaanxi, P. R. China
| | - Xiu-Lin Chen
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, Shaanxi, P. R. China
| | - Guang-Wei Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, Shaanxi, P. R. China
| |
Collapse
|
8
|
GOBP1 from the Variegated Cutworm Peridroma saucia (Hübner) (Lepidoptera: Noctuidae) Displays High Binding Affinities to the Behavioral Attractant ( Z)-3-Hexenyl acetate. INSECTS 2021; 12:insects12100939. [PMID: 34680708 PMCID: PMC8540349 DOI: 10.3390/insects12100939] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022]
Abstract
The variegated cutworm Peridroma saucia (Hübner) is a worldwide pest that causes serious damage to many crops. To recognize sex pheromones and host plant volatiles, insects depend on olfactory chemoreception involving general odorant-binding proteins (GOBPs). In this study, PsauGOBP1 was cloned from the adult antennae of P. saucia. RT-qPCR and Western-blot analysis showed that PsauGOBP1 was specifically and equally expressed in the adult antennae of both females and males. Fluorescence competitive-binding assays with sex pheromones and host plant volatiles demonstrated that PsauGOBP1 bound to six host plant volatiles: (Z)-3-hexenyl acetate (KD = 4.0 ± 0.1 μM), citral (KD = 5.6 ± 0.4 μM), farnesol (KD = 6.4 ± 0.6 μM), nonanal (KD = 6.8 ± 0.3 μM), (Z)-3-hexen-1-ol (KD = 8.5 ± 0.6 μM), and benzaldehyde (KD = 9.4 ± 0.5 μM). Electroantennogram recordings with the six host plant volatiles indicated that (Z)-3-hexenyl acetate elicited the strongest responses from both male and female antennae. Further bioassays using Y-tube olfactometers showed that (Z)-3-hexenyl acetate was attractive to adult P. saucia of both sexes. These results suggest that PsauGOBP1 might be involved in detecting host plant volatiles and that (Z)-3-hexenyl acetate might serve as a potential attractant for the biological control of P. saucia.
Collapse
|
9
|
Identification and comparative expression analysis of odorant-binding proteins in the reproductive system and antennae of Athetis dissimilis. Sci Rep 2021; 11:13941. [PMID: 34230568 PMCID: PMC8260659 DOI: 10.1038/s41598-021-93423-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/22/2021] [Indexed: 11/08/2022] Open
Abstract
Odorant-binding proteins (OBPs) are prevalent in the antennal transcriptomes of different orders of insects. Studies on OBPs have focused on their role in the insect chemosensory system, but knowledge of their functions in the insect testis is limited. We sequenced the transcriptomes of the Athetis dissimilis reproductive organs and analyzed the expression of AdisOBP genes in different tissues. We identified 23 OBPs in the testis and ovaries and 31 OBPs in antennal transcriptomes. The results of real-time quantitative PCR revealed that 23 of the 54 OBP genes were highly expressed in both female and male antennae, including three that exhibited male-biased expression and 15 that exhibited female-biased expression. A total of 24 OBPs were highly expressed in the testis of A. dissimilis, while expression of OBPs in the ovaries was very low. These findings highlight the functional diversity of OBPs in insects and can facilitate further studies on the OBPs in A. dissimilis and lepidopteran species.
Collapse
|
10
|
Liu Y, Zhu F, Shen Z, Moural TW, Liu L, Li Z, Liu X, Xu H. Glutaredoxins and thioredoxin peroxidase involved in defense of emamectin benzoate induced oxidative stress in Grapholita molesta. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 176:104881. [PMID: 34119223 DOI: 10.1016/j.pestbp.2021.104881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/08/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Glutaredoxins (Grxs) and thioredoxin peroxidases (Tpxs) are major antioxidant enzyme families involved in regulating cellular redox homeostasis and in defense of enhanced oxidative stress through scavenging reactive oxygen species (ROS). However, the functions of these enzymes have not been reported in the oriental fruit moth, Grapholita molesta (Busck), a worldwide pest of stone and pome fruits. Here, we identified four new antioxidant genes, GmGrx, GmGrx3, GmGrx5, and GmTpx which were induced by exposure with emamectin benzoate, a commonly used biopesticide for G. molesta control. Other environmental factors (low and high temperatures, Escherichia coli and Metarhizium anisopliae) also significantly induced the expression of these genes. After GmGrx or GmTpx silenced by RNA interference (RNAi), the percentage of larval survival to emamectin benzoate were significantly decreased, demonstrating that GmGrx and GmTpx are involved in protecting G. molesta from stresses induced by emamectin benzoate. Furthermore, silenced GmGrx, GmGrx3, GmGrx5, or GmTpx significantly enhanced the enzymatic activities of superoxide dismutase (SOD) (except GmTpx) and peroxidase (POD), as well as the contents of hydrogen peroxide and metabolites ascorbate. Taken together, our results suggest that GmGrx, GmGrx3, GmGrx5, and GmTpx may play critical roles in antioxidant defense. Specially, GmGrx and GmTpx contribute to the defense of oxidative damage induced by exposure to emamectin benzoate through scavenging excessive ROS in G. molesta. Our findings provided a theoretical basis for understanding functions of insect glutaredoxin and peroxidase systems.
Collapse
Affiliation(s)
- Yanjun Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China; Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Zhongjian Shen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Timothy W Moural
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Lining Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Huanli Xu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.
| |
Collapse
|
11
|
Chen L, Tian K, Xu X, Fang A, Cheng W, Wang G, Liu W, Wu J. Detecting Host-Plant Volatiles with Odorant Receptors from Grapholita molesta (Busck) (Lepidoptera: Tortricidae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2711-2717. [PMID: 32040304 DOI: 10.1021/acs.jafc.9b07305] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Grapholita molesta is a global pest of stone and pome fruits. The sensitive olfactory system plays a crucial role in regulating key behavioral activities of insects and G. molesta relies heavily on general odorant receptors (ORs) to detect host-plant volatiles. In this study, three general OR genes from G. molesta (GmolOR12, GmolOR20, and GmolOR21) were identified. Quantitative polymerase chain reaction revealed that GmolORs expression was considerably higher in adults and adult antennae than in any other life stages and body parts, respectively. Moreover, the expression of GmolORs was significantly higher in the antennae of females than in those of males, with a peak in the antennae of 3-days-old adult females. GmolOR20 and GmolOR21 displayed no responses to any of the odorant compounds tested in the Xenopus oocyte system. GmolOR12 was tuned mainly to 5 of the 47 odorant components tested (including decanol, heptanal, octanal, nonanal, and decanal), and the response to aldehydes among the 5 components was the highest. Additionally, they all elicited female and male antennae electroantennogram responses, and the aldehydes elicited the highest response among the 5 components. These results suggested that GmolOR12 in the G. molesta olfactory system plays an important role in sensing aldehydes and that GmolOR12 is involved in sensing host-plant volatiles. These findings provide insight into the possibility of using host-plant volatiles for the control of G. molesta.
Collapse
Affiliation(s)
- Lihui Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Ke Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangli Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Aisheng Fang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Weining Cheng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junxiang Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
12
|
Chen XL, Li GW, Xu XL, Wu JX. Molecular and Functional Characterization of Odorant Binding Protein 7 From the Oriental Fruit Moth Grapholita molesta (Busck) (Lepidoptera: Tortricidae). Front Physiol 2018; 9:1762. [PMID: 30618787 PMCID: PMC6295574 DOI: 10.3389/fphys.2018.01762] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/22/2018] [Indexed: 01/14/2023] Open
Abstract
Odorant-binding proteins (OBPs) are widely and abundantly distributed in the insect sensillar lymph and are essential for insect olfactory processes. The OBPs can capture and transfer odor molecules across the sensillum lymph to odorant receptors and trigger the signal transduction pathway. In this study, a putative OBP gene, GmolOBP7, was cloned using specific-primers, based on the annotated unigene which forms the antennal transcriptome of Grapholita molesta. Real-time PCR (qRT-PCR) analysis revealed that GmolOBP7 was highly expressed in the wings of males and the antennae of both male and female adult moths, while low levels were expressed in other tissues. The recombinant GmolOBP7 (rGmolOBP7) was successfully expressed and purified via Ni-ion affinity chromatography. The results of binding assays revealed that rGmolOBP7 exhibited a high binding affinity to the minor sex pheromone 1-dodecanol containing Ki of 7.48 μM and had high binding capacities to the host-plant volatiles, such as pear ester, lauraldehyde and α-ocimene. RNA-interference experiments were performed to further assess the function of GmolOBP7. qRT-PCR showed that the levels of mRNA transcripts significantly declined in 1 and 2 day old male and female moths, treated with GmolOBP7 dsRNA, compared with non-injection controls. The EAG responses of dsRNA-injected males and females to pear ester, as well as the EAG responses of dsRNA-injected males to 1-dodecanol, were significantly reduced compared to the GFP-dsRNA-injected and non-injected controls. We therefore infer that GmolOBP7 has a dual function in the perception and recognition of the host-plant volatiles and sex pheromones.
Collapse
Affiliation(s)
- Xiu-Lin Chen
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, China.,Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan' an University, Yan'an, China
| | - Guang-Wei Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan' an University, Yan'an, China
| | - Xiang-Li Xu
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, China
| | - Jun-Xiang Wu
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, China
| |
Collapse
|
13
|
Li GW, Chen XL, Xu XL, Wu JX. Degradation of sex pheromone and plant volatile components by an antennal glutathione S-transferase in the oriental fruit moth,Grapholita molesta Busck (Lepidoptera: Tortricidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 99:e21512. [PMID: 30387866 DOI: 10.1002/arch.21512] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/14/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
Insect antennae have a primary function of perceiving and discerning odorant molecules including sex pheromones and host plant volatiles. The assumption that genes highly expressed in the antennae may have an olfactory-related role associated with signal transduction. Here, one delta subfamily glutathione S-transferase (GST) gene (GmolGSTD1) was obtained from an antennal transcriptome of Grapholita molesta. Quantitative real-time polymerase chain reaction results revealed that GmolGSTD1 was mainly expressed in antennae and the expression levels were significantly higher in female antennae than in male antennae. The recombinant GmolGSTD1 (rGmolGSTD1) showed glutathione-conjugating activity toward 1-chloro-2,4-dinitrobenzene (CDNB) as substrates. The pH range for optimal rGmolGSTD1 enzyme activity was 6.0-6.5, and rGmolGSTD1 enzyme activity had maximal peaks at 35-40°C. Spectrophotometric analysis indicated that insecticides had weak inhibitory effects on the activity of rGmolGSTD1 with the inhibitory rates of 28.82% for chlorpyrifos, 22.27% for lambda-cyhalothrin, 18.07% for bifenthrin, 20.42% for acetamiprid, 17.57% for thiamethoxam, 25.67% for metaflumizone, 27.43% for abamectin, and 7.24% for chlorbenzuron. rGmolGSTD1 exhibited high degradation activity to the sex pheromone component (Z)-8-dodecenyl alcohol and the host plant volatile butyl hexanoate with the degradation efficiency of 75.01% and 48.54%, respectively. We speculate that GmolGSTD1 works in inactivating odorant molecules and maintaining sensitivity to olfactory communication of G. molesta.
Collapse
Affiliation(s)
- Guang-Wei Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, China
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, China
| | - Xiu-Lin Chen
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, China
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, China
| | - Xiang-Li Xu
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, China
- Key Laboratory of Applied Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jun-Xiang Wu
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, China
- Key Laboratory of Applied Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
14
|
Molecular and Functional Characterization of pheromone binding protein 1 from the Oriental Fruit Moth, Grapholita molesta (Busck). Sci Rep 2018; 8:2276. [PMID: 29396476 PMCID: PMC5797111 DOI: 10.1038/s41598-018-20719-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 01/23/2018] [Indexed: 11/24/2022] Open
Abstract
Pheromone binding protein (PBP) is thought primarily to bind and transport the sex pheromone in moths. The accumulated studies suggest that three PBPs were identified in moth species. In Grapholita molesta, the functions of GmolPBP2 and GmolPBP3 have been previously studied. However, the function of GmolPBP1 is still unclear. Furthermore, the Cydia pomonella sex pheromone Codlemone can act as a sex pheromone synergist of G. molesta. In C. pomonella, CpomPBP1 specifically bind the Codlemone. CpomPBP1 displays high identity with GmolPBP1 (70%), indicating that the two PBPs may share a similar 3D structure thus can bind the similar or same ligands. In this study, we explored the molecular and functional characterization of GmolPBP1. GmolPBP1, bearing the typical characteristics of Lepidopteran odorant binding proteins, was closest phylogenetically to CpomPBP1. Binding studies demonstrated that GmolPBP1 exhibited strong binding affinities with (Z)-8-dodecenyl alcohol, 1-dodecanol and Codlemone. Molecular docking showed that GmolPBP1 has different ligand recognition mechanism for the three ligands. Our results suggest that GmolPBP1 functions as recognizer of (Z)-8-dodecenyl alcohol and 1-dodecanol of the female sex pheromone blend, and may be the potential transporter of Codlemone, which contributes to the synergism of the pheromone response of G. molesta by Codlemone.
Collapse
|
15
|
Bioinformatic analysis of gene encoding odorant binding protein (OBP) 1, OBP2, and chemosensory proteins in Grapholita molesta. BIOCHEM SYST ECOL 2017. [DOI: 10.1016/j.bse.2016.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Guo Y, Chai Y, Zhang L, Zhao Z, Gao LL, Ma R. Transcriptome Analysis and Identification of Major Detoxification Gene Families and Insecticide Targets in Grapholita Molesta (Busck) (Lepidoptera: Tortricidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2017; 17:3075266. [PMID: 28365764 PMCID: PMC5469388 DOI: 10.1093/jisesa/iex014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Indexed: 05/12/2023]
Abstract
The oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae), is an important pest of most stone and pome fruits and causes serious damage to the fruit industry worldwide. This insect pest has been primarily controlled through the application of insecticides; as a result, G. molesta has developed resistance to many different types of insecticides. To identify detoxification genes, we have, de novo, sequenced the transcriptome of G. molesta (Lepidoptera: Tortricidae) and yielded 58,970 unigenes of which 26,985 unigenes matched to known proteins. In total, 2,040 simple sequence repeats have been identified. The comprehensive transcriptome data set has permitted us to identify members of important gene families related to detoxification in G. molesta, including 77 unigenes of putative cytochrome P450s, 28 of glutathione S-transferases, 46 of Carboxylesterases, and 31 of insecticide targets. Orthologs of some of these unigenes have shown to play a pivotal role in insecticide resistance in other insect species and those unigenes likely have similar functions in G. molesta.
Collapse
Affiliation(s)
- Yanqiong Guo
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China (; ; ; )
| | - Yanping Chai
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China (; ; ; )
| | - Lijun Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China (; ; ; )
| | - Zhiguo Zhao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China (; ; ; )
| | - Ling-Ling Gao
- CSIRO Agriculture & Food, Private Bag 5, Wembley, WA 6913, Australia, and
| | - Ruiyan Ma
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China (; ; ; )
| |
Collapse
|
17
|
Li G, Chen X, Li B, Zhang G, Li Y, Wu J. Binding Properties of General Odorant Binding Proteins from the Oriental Fruit Moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae). PLoS One 2016; 11:e0155096. [PMID: 27152703 PMCID: PMC4859520 DOI: 10.1371/journal.pone.0155096] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 04/25/2016] [Indexed: 01/23/2023] Open
Abstract
Background The oriental fruit moth Grapholita molesta is a host-switching pest species. The adults highly depend on olfactory cues in locating optimal host plants and oviposition sites. Odorant binding proteins (OBPs) are thought to be responsible for recognizing and transporting hydrophobic odorants across the aqueous sensillum lymph to stimulate the odorant receptors (ORs) within the antennal sensilla and activate the olfactory signal transduction pathway. Exploring the physiological function of these OBPs could facilitate understanding insect chemical communications. Methodology/Principal Finding Two antennae-specific general OBPs (GOBPs) of G. molesta were expressed and purified in vitro. The binding affinities of G. molesta GOBP1 and 2 (GmolGOBP1 and 2) for sex pheromone components and host plant volatiles were measured by fluorescence ligand-binding assays. The distribution of GmolGOBP1 and 2 in the antennal sensillum were defined by whole mount fluorescence immunohistochemistry (WM-FIHC) experiments. The binding sites of GmolGOBP2 were predicted using homology modeling, molecular docking and site-directed mutagenesis. Both GmolGOBP1 and 2 are housing in sensilla basiconica and with no differences in male and female antennae. Recombinant GmolGOBP1 (rGmolGOBP1) exhibited broad binding properties towards host plant volatiles and sex pheromone components; rGmolGOBP2 could not effectively bind host plant volatiles but showed specific binding affinity with a minor sex pheromone component dodecanol. We chose GmolGOBP2 and dodecanol for further homology modeling, molecular docking, and site-directed mutagenesis. Binding affinities of mutants demonstrated that Thr9 was the key binding site and confirmed dodecanol bonding to protein involves a hydrogen bond. Combined with the pH effect on binding affinities of rGmolGOBP2, ligand binding and release of GmolGOBP2 were related to a pH-dependent conformational transition. Conclusion Two rGmolGOBPs exhibit different binding characteristics for tested ligands. rGmolGOBP1 has dual functions in recognition of host plant volatiles and sex pheromone components, while rGmolGOBP2 is mainly involved in minor sex pheromone component dodecanol perception. This study also provides empirical evidence for the predicted functions of key amino acids in recombinant protein ligand-binding characteristics.
Collapse
Affiliation(s)
- Guangwei Li
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, Shaanxi, China
- Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiulin Chen
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, Shaanxi, China
- Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, Shaanxi, China
| | - Boliao Li
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, Shaanxi, China
- Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, Shaanxi, China
| | - Guohui Zhang
- Institute of Entomology, Agricultural College, Yangtze University, Jingzhou, Hubei, China
| | - Yiping Li
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, Shaanxi, China
- Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (YPL); (JXW)
| | - Junxiang Wu
- Key Laboratory of Plant Protection Resources and Pest Management (Northwest A&F University), Ministry of Education, Yangling, Shaanxi, China
- Key Laboratory of Applied Entomology, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (YPL); (JXW)
| |
Collapse
|
18
|
Yao Q, Xu S, Dong Y, Lu K, Chen B. Identification and characterisation of two general odourant-binding proteins from the litchi fruit borer, Conopomorpha sinensis Bradley. PEST MANAGEMENT SCIENCE 2016; 72:877-887. [PMID: 26085035 DOI: 10.1002/ps.4062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/08/2015] [Accepted: 06/12/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND The litchi fruit borer, Conopomorpha sinensis Bradley, is one of the most destructive pests of litchi and longan fruits in south-east Asia and southern China, yet the molecular biology and physiology of this pest remain poorly understood. Control of this insect pest may be achieved by interfering with its recognition of host plants. RESULTS In this study, two cDNAs encoding CsGOBP1 and CsGOBP2 were identified from the antennae of C. sinensis, and a comparative study on these two C. sinensis GOBPs (CsGOBPs) was conducted. The secondary structure of these two CsGOBPs mainly consists of six α-helices, but three-dimensional structural predictions of CsGOBP1 and CsGOBP2 indicated significant difference in the final 3D models. Results in real-time PCR assays indicated that the two CsGOBPs had different tissue- and sex-dependent expression patterns. A competitive binding assay revealed that CsGOBP1 considerably prefer the component exhibited in Guiwei or Feizixiao litchi cultivar, while CsGOBP2 bind to general volatile components from nine litchi cultivars. Additionally, ethyl acetate has higher binding affinities to CsGOBP2 protein than to CsGOBP1, and has remarkable attraction to female C. sinensis moths in Y-tube olfactometer assays. CONCLUSION These results strongly suggest functional difference between these two CsGOBPs in perception of host plant odourants.
Collapse
Affiliation(s)
- Qiong Yao
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Shu Xu
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Yizhi Dong
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Kai Lu
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Bingxu Chen
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| |
Collapse
|
19
|
Zhou J, Zhang N, Wang P, Zhang S, Li D, Liu K, Wang G, Wang X, Ai H. Identification of Host-Plant Volatiles and Characterization of Two Novel General Odorant-Binding Proteins from the Legume Pod Borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae). PLoS One 2015; 10:e0141208. [PMID: 26517714 PMCID: PMC4627759 DOI: 10.1371/journal.pone.0141208] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/05/2015] [Indexed: 11/19/2022] Open
Abstract
Chemoreception is a key feature in selection of host plant by phytophagous insects, and odorant-binding proteins (OBPs) are involved in chemical communication of both insects and vertebrates. The legume pod borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae) is one of the key pest species of cowpea and widely distributed throughout tropical and subtropical regions, causing up to 80% of yield loss. In this study, we investigated the electrophysiological responses of female M. vitrata to floral volatiles from V. unguiculata. Seventeen electroantennogram-active compounds were identified from floral volatiles of V. unguiculata by coupled gas chromatography-electroantennography (GC-EAD) and gas chromatography-mass spectrometry (GC-MS). Then, we cloned two novel full-length GOBP genes (MvitGOBP1 and MvitGOBP2) from the antennae of M. vitrata using reverse transcription PCR. Protein sequence analysis indicated that they shared high sequence similarity with other Pyralididae insect GOBPs and had the typical six-cysteine signature. Real-time PCR analysis indicated that MvitGOBP1-2 mRNA was highly expressed in the antennae of female adult with several thousands-fold difference compare to other tissue. Next, the recombinant MvitGOBP1-2 was expressed in Escherichia coli and purified using Ni ion affinity chromatography. Fluorescence binding assays demonstrated that MvitGOBP1-2 had different binding affinities with 17 volatile odorant molecules including butanoic acid butyl ester, limonene, 4-ethylpropiophenone, 1H-indol-4-ol, butanoic acid octyl ester and 2-methyl-3-phenylpropanal. In the field trapping experiment, these six floral volatiles could effectively attract female moths and showed significant difference compared with the blank lure. These results suggested that MvitGOBPs and the seventeen floral volatiles are likely to function in the olfactory behavior response of female moths, which may have played crucial roles in the selection of oviposition sites. The six compounds that we have identified from the volatiles of V. unguiculata may provide useful information for exploring efficiency monitoring and integrated pest management strategies of this legume pod borer in the field.
Collapse
Affiliation(s)
- Jing Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Na Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Pan Wang
- Key Laboratory of Insect Resource Utilization & Sustainable Pest Management of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shichang Zhang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Daiqin Li
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Kaiyu Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Guoxiu Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xiaoping Wang
- Key Laboratory of Insect Resource Utilization & Sustainable Pest Management of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui Ai
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
- * E-mail:
| |
Collapse
|
20
|
Gong ZJ, Liu S, Jiang YD, Zhou WW, Liang QM, Cheng J, Zhang CX, Zhu ZR, Gurr GM. Construction and analysis of antennal cDNA library from rice striped stem borer, Chilo suppressalis (Walker) (Lepidoptera: Pyralidae), and expression profiles of putative odorant-binding protein and chemosensory protein genes. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 89:35-53. [PMID: 25639603 DOI: 10.1002/arch.21224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this study, we constructed a high-quality cDNA library from the antennae of the Chilo suppressalis (Walker) (Lepidoptera: Pyralidae). A total of 1,235 colonies with inserts greater than 0.7 kb were sequenced and analyzed. Homology searching coupled with bioinformatics analysis identified 15 and 7 cDNA sequences, respectively, encoding putative odorant-binding proteins (OBPs) and chemosensory proteins (CSPs). A phylogenetic tree of CsupCSPs showed that each CsupCSP has orthologs in Manduca sexta and Bombyx mori with strong bootstrapping support. One CSP was either very specific or more related to the CSPs of another species than to conspecific CSP. The expression profiles of the OBPs and CSPs in different tissues were measured by real-time quantitative PCR. The results revealed that of the 11 OBP genes, the transcript levels of CsupOBP1, CsupOBP5, and CsupOBP7 were higher in both male and female antennae than those in other tissues. And CsupCSP7 was highly expressed in both male and female antennae. Based on these results, the possible physiological functions of CsupOBPs and CsupCSPs were discussed.
Collapse
Affiliation(s)
- Zhong-Jun Gong
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China; Key Laboratory of Agricultural Entomology, Ministry of Agriculture, Hangzhou, China; Institute of Insect Sciences, Zhejiang University, Hangzhou, China; Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhu JY, Zhang LF, Ze SZ, Wang DW, Yang B. Identification and tissue distribution of odorant binding protein genes in the beet armyworm, Spodoptera exigua. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:722-728. [PMID: 23499610 DOI: 10.1016/j.jinsphys.2013.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/24/2013] [Accepted: 02/26/2013] [Indexed: 06/01/2023]
Abstract
Odorant binding proteins (OBPs) contribute to the remarkable sensitivity of the insect's olfactory system and play an important role in insect chemical communication. In this study, we identified 11 putative cDNAs encoding OBPs (namely SexiOBP1-11) from the antennal full length cDNA library of the beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) and examined their expression profiles in different adult body tissues (antennae, heads, thoraxes, abdomens, legs and wings) by real-time quantitative PCR (qPCR). All SexiOBPs had the characteristic typical features of the OBP family, with the exception of SexiOBP11, which lacked the predicted signal peptide sequence at the N-terminus. qPCR revealed that all of these genes were highly transcribed in the antennae. SexiOBP1-4 and SexiOBP10 were dominantly restricted to antennae. Within antennae, SexiOBP2-4 and SexiOBP10 exhibited female-biased expression patterns, while the expression of SexiOBP7 was male-biased, indicating that they might be involved in interacting with sex pheromones. In general, these OBPs were mainly expressed in chemosensory-specific tissues, although some displayed non-chemosensory or ubiquitous tissue expression. The data is helpful for further determining the potential physiological functions of S. exigua OBPs, and paves the way towards a better understanding of the chemosensory perception of this pest, which may help to uncover new targets for behavioral interference used as a control strategy.
Collapse
Affiliation(s)
- Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | | | | | | | | |
Collapse
|